STUDY OF THE BRS CHARGE IN THE POLYAKOV STRING BY THE KUGO-OJIMA METHOD

1988 ◽  
Vol 03 (04) ◽  
pp. 943-951
Author(s):  
J. ABAD ◽  
R. RODRIGUEZ-TRÍAS

Using the method of Kugo and Ojima we obtain the Becchi-Rouet-Stora charge in the string theory proposed by Polyakov. When a conformal improved energy-momentum tensor is used, we obtain the same BRS charge that emerges from other methods.

1995 ◽  
Vol 10 (14) ◽  
pp. 2123-2142 ◽  
Author(s):  
H. LU ◽  
X.J. WANG ◽  
K.-W. XU ◽  
C.N. POPE ◽  
K. THIELEMANS

In this paper, we examine the conditions under which a higher-spin string theory can be quantized. The quantizability is crucially dependent on the way in which the matter currents are realized at the classical level. In particular, we construct classical realizations for the W2,s algebra, which is generated by a primary spin-s current in addition to the energy-momentum tensor, and discuss the quantization for s≤8. From these examples we see that quantum BRST operators can exist even when there is no quantum generalization of the classical W2,s algebra. Moreover, we find that there can be several inequivalent ways of quantizing a given classical theory, leading to different BRST operators with inequivalent cohomologies. We discuss their relation to certain minimal models. We also consider the hierarchical embeddings of string theories proposed recently by Berkovits and Vafa, and show how the already known W strings provide examples of this phenomenon. Attempts to find higher-spin fermionic generalizations lead us to examine whether classical BRST operators for [Formula: see text](n odd) algebras can exist. We find that even though such fermionic algebras close up to null fields, one cannot build nilpotent BRST operators, at least of the standard form.


2016 ◽  
Vol 31 (01) ◽  
pp. 1650001
Author(s):  
Samrat Bhowmick

U-duality symmetry of M-theory and S- and T-duality of string theory can be used to study various black brane solutions. We explore some aspect of this idea here. This symmetry can be used to get relations among various components of the metric of the black brane. These relations in turn give relations among various components of the energy–momentum tensor. We show that, using these relations, without knowing the explicit form of form fields, we can get the black brane solutions. These features were studied previously in the context of M-theory. Here, we extensively studied them in string theory (type II supergravity). We also show that this formulation works for exotic branes. We give an example of a time-dependent system where this method is essential.


2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


2021 ◽  
Vol 11 (2) ◽  
pp. 681
Author(s):  
Pengfei Yu ◽  
Weifeng Leng ◽  
Yaohong Suo

The flexoelectricity, which is a new electromechanical coupling phenomenon between strain gradients and electric polarization, has a great influence on the fracture analysis of flexoelectric solids due to the large gradients near the cracks. On the other hand, although the flexoelectricity has been extensively investigated in recent decades, the study on flexoelectricity in nonhomogeneous materials is still rare, especially the fracture problems. Therefore, in this manuscript, the conservation integrals for nonhomogeneous flexoelectric materials are obtained to solve the fracture problem. Application of operators such as grad, div, and curl to electric Gibbs free energy and internal energy, the energy-momentum tensor, angular momentum tensor, and dilatation flux can also be derived. We examine the correctness of the conservation integrals by comparing with the previous work and discuss the operator method here and Noether theorem in the previous work. Finally, considering the flexoelectric effect, a nonhomogeneous beam problem with crack is solved to show the application of the conservation integrals.


The flux integral for axisymmetric polar perturbations of static vacuum space-times, derived in an earlier paper directly from the relevant linearized Einstein equations, is rederived with the aid of the Einstein pseudo-tensor by a simple algorism. A similar earlier effort with the aid of the Landau–Lifshitz pseudo-tensor failed. The success with the Einstein pseudo-tensor is due to its special distinguishing feature that its second variation retains its divergence-free property provided only the equations governing the static space-time and its linear perturbations are satisfied. When one seeks the corresponding flux integral for Einstein‒Maxwell space-times, the common procedure of including, together with the pseudo-tensor, the energy‒momentum tensor of the prevailing electromagnetic field fails. But, a prescription due to R. Sorkin, of including instead a suitably defined ‘Noether operator’, succeeds.


Sign in / Sign up

Export Citation Format

Share Document