ON THE WESS-ZUMINO TERM FOR A GENERAL ANOMALOUS GAUGE THEORY WITH SECOND CLASS CONSTRAINTS

1990 ◽  
Vol 05 (06) ◽  
pp. 1123-1133 ◽  
Author(s):  
C. WOTZASEK

We proposed an algorithm to modify anomalous gauge theories by inserting new degrees of freedom in the system which transforms the constraints from second to first class. We illustrate this technique working out the cases of a massive vector boson field and the chiral Schwinger model.

1999 ◽  
Vol 14 (24) ◽  
pp. 3761-3788 ◽  
Author(s):  
JOHN ELLIS ◽  
N. E. MAVROMATOS

We present a Liouville-string approach to confinement in four-dimensional gauge theories, which extends previous approaches to include nonconformal theories. We consider Liouville field theory on world sheets whose boundaries are the Wilson loops of gauge theory, which exhibit vortex and spike defects. We show that world sheet vortex condensation occurs when the Wilson loop is embedded in four target–space–time dimensions, and show that this corresponds to the condensation of gauge magnetic monopoles in target–space. We also show that vortex condensation generates an effective string tension corresponding to the confinement of electric degrees of freedom. The tension is independent of the string length in a gauge theory whose electric coupling varies logarithmically with the length scale. The Liouville field is naturally interpreted as an extra target dimension, with an anti-de-Sitter (AdS) structure induced by recoil effects on the gauge monopoles, interpreted as D branes of the effective string theory. Black holes in the bulk AdS space correspond to world sheet defects, so that phases of the bulk gravitational system correspond to the different world sheet phases, and hence to different phases of the four-dimensional gauge theory. Deconfinement is associated with a Berezinskii–Kosterlitz–Thouless transition of vortices on the Wilson-loop world sheet, corresponding in turn to a phase transition of the black holes in the bulk AdS space.


1990 ◽  
Vol 05 (14) ◽  
pp. 2839-2851
Author(s):  
J.L. ALONSO ◽  
J.L. CORTÉS ◽  
E. RIVAS

In the path integral approach we introduce a general regularization scheme for a Weyl fermionic measure. This allows us to study the functional integral formulation of a two-dimensional U(1) gauge theory with an arbitrary content of left-handed and right-handed fermions. A particular result is that, in contrast with a regularization of the fermionic measure based on a unique Dirac operator, by taking the Dirac fermionic measure as a product of two independent Weyl fermionic measures a consistent and unitary result can be obtained for the Chiral Schwinger Model (CSM) as a byproduct of the arbitrariness in the definition of the fermionic measure.


2004 ◽  
Vol 19 (32) ◽  
pp. 5663-5692 ◽  
Author(s):  
R. P. MALIK

We discuss the (dual-)gauge transformations and BRST cohomology for the two (1+1)-dimensional (2D) free Abelian one-form and four (3+1)-dimensional (4D) free Abelian two-form gauge theories by exploiting the (co-)BRST symmetries (and their corresponding generators) for the Lagrangian densities of these theories. For the 4D free two-form gauge theory, we show that the changes on the antisymmetric polarization tensor eμν(k) due to (i) the (dual-)gauge transformations corresponding to the internal symmetry group, and (ii) the translation subgroup T(2) of the Wigner's little group, are connected with each other for the specific relationships among the parameters of these transformation groups. In the language of BRST cohomology defined with respect to the conserved and nilpotent (co-)BRST charges, the (dual-)gauge transformed states turn out to be the sum of the original state and the (co-)BRST exact states. We comment on (i) the quasitopological nature of the 4D free two-form gauge theory from the degrees of freedom count on eμν(k), and (ii) the Wigner's little group and the BRST cohomology for the 2D one-form gauge theory vis-à-vis our analysis for the 4D two-form gauge theory.


2006 ◽  
Vol 37 (5) ◽  
pp. 24-26 ◽  
Author(s):  
Dorin N. Poenaru ◽  
Alexandru Calboreanu

1989 ◽  
Vol 04 (05) ◽  
pp. 501-506
Author(s):  
O. J. KWON ◽  
B. H. CHO ◽  
S. K. KIM ◽  
Y. D. KIM

The chiral Schwinger model is a massive vector theory at the quantum level. We construct the gauge invariant action using Stueckelberg formalism from this. Then the resulting action is exactly the same as the modified action obtained by path-integral formalism. We propose a simple manner for the quantization of anomalous gauge theories.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Wei Gu ◽  
Eric Sharpe ◽  
Hao Zou

Abstract In this note we study IR limits of pure two-dimensional supersymmetric gauge theories with semisimple non-simply-connected gauge groups including SU(k)/ℤk, SO(2k)/ℤ2, Sp(2k)/ℤ2, E6/ℤ3, and E7/ℤ2 for various discrete theta angles, both directly in the gauge theory and also in nonabelian mirrors, extending a classification begun in previous work. We find in each case that there are supersymmetric vacua for precisely one value of the discrete theta angle, and no supersymmetric vacua for other values, hence supersymmetry is broken in the IR for most discrete theta angles. Furthermore, for the one distinguished value of the discrete theta angle for which supersymmetry is unbroken, the theory has as many twisted chiral multiplet degrees of freedom in the IR as the rank. We take this opportunity to further develop the technology of nonabelian mirrors to discuss how the mirror to a G gauge theory differs from the mirror to a G/K gauge theory for K a subgroup of the center of G. In particular, the discrete theta angles in these cases are considerably more intricate than those of the pure gauge theories studied in previous papers, so we discuss the realization of these more complex discrete theta angles in the mirror construction. We find that discrete theta angles, both in the original gauge theory and their mirrors, are intimately related to the description of centers of universal covering groups as quotients of weight lattices by root sublattices. We perform numerous consistency checks, comparing results against basic group-theoretic relations as well as with decomposition, which describes how two-dimensional theories with one-form symmetries (such as pure gauge theories with nontrivial centers) decompose into disjoint unions, in this case of pure gauge theories with quotiented gauge groups and discrete theta angles.


1992 ◽  
Vol 07 (01) ◽  
pp. 177-191 ◽  
Author(s):  
T. D. KIEU

A formulation is proposed of Abelian chiral gauge theory which is invariant with respect to a gauge symmetry and admits both fermion and vector-boson mass terms, without invoking the Higgs mechanism. The issues of unitarity and renormalizability are discussed, and a lattice chiral regularization free from the problem of fermion-species doubling is constructed and compared with others.


Author(s):  
Kazutoshi Ohta ◽  
Norisuke Sakai

Abstract We study the moduli space volume of BPS vortices in quiver gauge theories on compact Riemann surfaces. The existence of BPS vortices imposes constraints on the quiver gauge theories. We show that the moduli space volume is given by a vev of a suitable cohomological operator (volume operator) in a supersymmetric quiver gauge theory, where BPS equations of the vortices are embedded. In the supersymmetric gauge theory, the moduli space volume is exactly evaluated as a contour integral by using the localization. Graph theory is useful to construct the supersymmetric quiver gauge theory and to derive the volume formula. The contour integral formula of the volume (generalization of the Jeffrey-Kirwan residue formula) leads to the Bradlow bounds (upper bounds on the vorticity by the area of the Riemann surface divided by the intrinsic size of the vortex). We give some examples of various quiver gauge theories and discuss properties of the moduli space volume in these theories. Our formula are applied to the volume of the vortex moduli space in the gauged non-linear sigma model with CPN target space, which is obtained by a strong coupling limit of a parent quiver gauge theory. We also discuss a non-Abelian generalization of the quiver gauge theory and “Abelianization” of the volume formula.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Brandon S. DiNunno ◽  
Niko Jokela ◽  
Juan F. Pedraza ◽  
Arttu Pönni

Abstract We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-N gauge theories. For concreteness, we focus on a simple holographic (2 + 1)-dimensional strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a U(1) gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic c-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.


Author(s):  
Arata Yamamoto

Abstract We study the quantum simulation of Z2 lattice gauge theory in 2+1 dimensions. The dual variable formulation, the so-called Wegner duality, is utilized for reducing redundant gauge degrees of freedom. The problem of artificial charge unconservation is resolved for any charge distribution. As a demonstration, we simulate the real-time evolution of the system with two static electric charges, i.e., with two temporal Wilson lines. Some results obtained by the simulator (with no hardware noise) and the real device (with sizable hardware noise) of a quantum computer are shown.


Sign in / Sign up

Export Citation Format

Share Document