TRANSVERSE POLARIZATION AT e+e− COLLIDERS AND CP VIOLATION FROM NEW PHYSICS

1991 ◽  
Vol 06 (15) ◽  
pp. 2707-2727 ◽  
Author(s):  
C.P. BURGESS ◽  
J.A. ROBINSON

We investigate the implications of CP violation from new physics for the process [Formula: see text] using transversely polarized electrons at SLC and LEP. We define an asymmetry whose nonzero value signals the time reversal violation of the underlying interactions. Using a general effective Lagrangian we analyse the signal expected from any new physics. We show that for a large class of theories this observable is exclusively sensitive to a single CP-violating electron gauge boson dimension six interaction. Experiments at LEP can probe such CP violation from new physics at scales up to several TeV.

2013 ◽  
Vol 22 (03) ◽  
pp. 1330006 ◽  
Author(s):  
Z. J. AJALTOUNI ◽  
E. DI SALVO

This review paper stresses the possible connection between time-reversal violation and new physics processes beyond the standard model. In particular, this violation is proposed as an alternative to CP violation in the search for such unkown processes. Emphasis is put on the weak decays of heavy hadrons, especially beauty ones. Specific methods for extracting useful parameters from experimental data are elaborated in order to test TR symmetry. These methods could be used successfully in the analysis of the LHC data.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
P. S. Bhupal Dev ◽  
Werner Rodejohann ◽  
Xun-Jie Xu ◽  
Yongchao Zhang

Abstract The P2 experiment aims at high-precision measurements of the parity-violating asymmetry in elastic electron-proton and electron-12C scatterings with longitudinally polarized electrons. We discuss here the sensitivity of P2 to new physics mediated by an additional neutral gauge boson Z′ of a new U(1)′ gauge symmetry. If the charge assignment of the U(1)′ is chiral, i.e., left- and right-handed fermions have different charges under U(1)′, additional parity-violation is induced directly. On the other hand, if the U(1)′ has a non-chiral charge assignment, additional parity-violation can be induced via mass or kinetic Z-Z′ mixing. By comparing the P2 sensitivity to existing constraints, we show that in both cases P2 has discovery potential over a wide range of Z′ mass. In particular, for chiral models, the P2 experiment can probe gauge couplings at the order of 10−5 when the Z′ boson is light, and heavy Z′ bosons up to 79 (90) TeV in the proton (12C) mode. For non-chiral models with mass mixing, the P2 experiment is sensitive to mass mixing angles smaller than roughly 10−4, depending on model details and gauge coupling magnitude.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Martin Bauer ◽  
Matthias Neubert ◽  
Sophie Renner ◽  
Marvin Schnubel ◽  
Andrea Thamm

Abstract Axions and axion-like particles (ALPs) are well-motivated low-energy relics of high-energy extensions of the Standard Model, which interact with the known particles through higher-dimensional operators suppressed by the mass scale Λ of the new-physics sector. Starting from the most general dimension-5 interactions, we discuss in detail the evolution of the ALP couplings from the new-physics scale to energies at and below the scale of electroweak symmetry breaking. We derive the relevant anomalous dimensions at two-loop order in gauge couplings and one-loop order in Yukawa interactions, carefully considering the treatment of a redundant operator involving an ALP coupling to the Higgs current. We account for one-loop (and partially two-loop) matching contributions at the weak scale, including in particular flavor-changing effects. The relations between different equivalent forms of the effective Lagrangian are discussed in detail. We also construct the effective chiral Lagrangian for an ALP interacting with photons and light pseudoscalar mesons, pointing out important differences with the corresponding Lagrangian for the QCD axion.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Wolfgang Kilian ◽  
Sichun Sun ◽  
Qi-Shu Yan ◽  
Xiaoran Zhao ◽  
Zhijie Zhao

Abstract We study the observability of new interactions which modify Higgs-pair production via vector-boson fusion processes at the LHC and at future proton-proton colliders. In an effective-Lagrangian approach, we explore in particular the effect of the operator $$ {h}^2{W}_{\mu \nu}^a{W}^{a,\mu \nu} $$ h 2 W μν a W a , μν , which describes the interaction of the Higgs boson with transverse vector-boson polarization modes. By tagging highly boosted Higgs bosons in the final state, we determine projected bounds for the coefficient of this operator at the LHC and at a future 27 TeV or 100 TeV collider. Taking into account unitarity constraints, we estimate the new-physics discovery potential of Higgs pair production in this channel.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Alexander Bednyakov ◽  
Alfiia Mukhaeva

Flavour anomalies have attracted a lot of attention over recent years as they provide unique hints for possible New Physics. Here, we consider a supersymmetric (SUSY) extension of the Standard Model (SM) with an additional anomaly-free gauge U(1) group. The key feature of our model is the particular choice of non-universal charges to the gauge boson Z′, which not only allows a relaxation of the flavour discrepancies but, contrary to previous studies, can reproduce the SM mixing matrices both in the quark and lepton sectors. We pay special attention to the latter and explicitly enumerate all parameters relevant for our calculation in the low-energy effective theory. We find regions in the parameter space that satisfy experimental constraints on meson mixing and LHC Z′ searches and can alleviate the flavour anomalies. In addition, we also discuss the predictions for lepton-flavour violating decays B+→K+μτ and B+→K+eτ.


2006 ◽  
Vol 21 (08n09) ◽  
pp. 1738-1749 ◽  
Author(s):  
LUCA SILVESTRINI

We review the status of rare decays and CP violation in extensions of the Standard Model. We analyze the determination of the unitarity triangle and the model-independent constraints on new physics that can be derived from this analysis. We find stringent bounds on new contributions to [Formula: see text] and [Formula: see text] mixing, pointing either to models of minimal flavour violation or to models with new sources of flavour and CP violation in b → s transitions. We discuss the status of the universal unitarity triangle in minimal flavour violation, and study rare decays in this class of models. We then turn to supersymmetric models with nontrivial mixing between second and third generation squarks, discuss the present constraints on this mixing and analyze the possible effects on CP violation in b → s nonleptonic decays and on [Formula: see text] mixing. We conclude presenting an outlook on Lepton-Photon 2009.


2020 ◽  
Vol 35 (01) ◽  
pp. 1930018
Author(s):  
Diego Guadagnoli

This paper describes the work pursued in the years 2008–2013 on improving the Standard Model prediction of selected flavor-physics observables. The latter includes: (1) [Formula: see text], that quantifies indirect CP violation in the [Formula: see text] system and (2) the very rare decay [Formula: see text], recently measured at the LHC. Concerning point (1), the paper describes our reappraisal of the long-distance contributions to [Formula: see text],[Formula: see text] that have permitted to unveil a potential tension between CP violation in the [Formula: see text]- and [Formula: see text]-system. Concerning point (2), the paper gives a detailed account of various systematic effects pointed out in Ref. 4 and affecting the Standard Model [Formula: see text] decay rate at the level of 10% — hence large enough to be potentially misinterpreted as nonstandard physics, if not properly included. The paper further describes the multifaceted importance of the [Formula: see text] decays as new physics probes, for instance how they compare with [Formula: see text]-peak observables at LEP, following the effective-theory approach of Ref. 5. Both cases (1) and (2) offer clear examples in which the pursuit of precision in Standard Model predictions offered potential avenues to discovery. Finally, this paper describes the impact of the above results on the literature, and what is the further progress to be expected on these and related observables.


2000 ◽  
Vol 15 (08) ◽  
pp. 1079-1156
Author(s):  
I. I. BIGI

The narrative of these lectures contains three main threads: (i) CP violation despite having so far been observed only in the decays of neutral kaons has been recognized as a phenomenon of truly fundamental importance. The KM ansatz constitutes the minimal implementation of CP violation: without requiring unknown degrees of freedom it can reproduce the known CP phenomenology in a nontrivial way. (ii) The physics of beauty hadrons — in particular their weak decays — opens a novel window onto fundamental dynamics: they usher in a new quark family (presumably the last one); they allow us to determine fundamental quantities of the Standard Model like the b quark mass and the CKM parameters V(cb), V(ub), V(ts) and V(td); they exhibit speedy or even rapid [Formula: see text] oscillations. (iii) Heavy Quark Expansions allow us to treat B decays with an accuracy that would not have been thought possible a mere decade ago. These three threads are joined together in the following manner: (a) Huge CP asymmetries are predicted in B decays, which represents a decisive test of the KM paradigm for CP violation. (b) Some of these predictions are made with high parametric reliability, which (c) can be translated into numerical precision through the judicious employment of novel theoretical technologies. (d) Beauty decays thus provide us with a rich and promising field to search for New Physics and even study some of its salient features. At the end of it there might quite possibly be a New Paradigm for High Energy Physics. There will be some other threads woven into this tapestry: electric dipole moments, and CP violation in other strange and in charm decays.


2003 ◽  
Vol 18 (30) ◽  
pp. 2083-2098
Author(s):  
Gabriella Sciolla

Recent measurements of time-dependent CP-asymmetries at the B-factories have led to substantial progress in our understanding of CP-violation. In this paper, we review some of these experimental results and discuss their implications in the Standard Model and their sensitivity to New Physics.


1990 ◽  
Vol 05 (05) ◽  
pp. 337-347
Author(s):  
DAVID LONDON

The standard model predictions for CP violating hadronic decay asymmetries are presented in the form of probability distributions. From these distributions, it can be easily seen what the most likely values of these quantities are, which measurements would clearly be signs of new physics, and which values of the CP asymmetries would most constrain the parameters of the standard model.


Sign in / Sign up

Export Citation Format

Share Document