STAR-SQUARE AND TETRAHEDRON EQUATIONS IN THE BAXTER-BAZHANOV MODEL

1993 ◽  
Vol 08 (08) ◽  
pp. 1399-1409 ◽  
Author(s):  
R.M. KASHAEV ◽  
V.V. MANGAZEEV ◽  
YU. G. STROGANOV

Spatially symmetrical Baxter-Bazhanov model’s Boltzmann weights are proved to satisfy the tetrahedron equation. The latter is a consequence of the “inversion” and “star-square” relations for the Boltzmann weight elementary building blocks.

2011 ◽  
Vol 18 (5) ◽  
pp. 563-572 ◽  
Author(s):  
G. Balasis ◽  
C. Papadimitriou ◽  
I. A. Daglis ◽  
A. Anastasiadis ◽  
I. Sandberg ◽  
...  

Abstract. The dynamics of complex systems are founded on universal principles that can be used to describe disparate problems ranging from particle physics to economies of societies. A corollary is that transferring ideas and results from investigators in hitherto disparate areas will cross-fertilize and lead to important new results. In this contribution, we investigate the existence of a universal behavior, if any, in solar flares, magnetic storms, earthquakes and pre-seismic electromagnetic (EM) emissions, extending the work recently published by Balasis et al. (2011a). A common characteristic in the dynamics of the above-mentioned phenomena is that their energy release is basically fragmentary, i.e. the associated events are being composed of elementary building blocks. By analogy with earthquakes, the magnitude of the magnetic storms, solar flares and pre-seismic EM emissions can be appropriately defined. Then the key question we can ask in the frame of complexity is whether the magnitude distribution of earthquakes, magnetic storms, solar flares and pre-fracture EM emissions obeys the same law. We show that these apparently different extreme events, which occur in the solar-terrestrial system, follow the same energy distribution function. The latter was originally derived for earthquake dynamics in the framework of nonextensive Tsallis statistics.


2016 ◽  
Vol 18 (22) ◽  
pp. 14795-14804 ◽  
Author(s):  
Chavdar Slavov ◽  
Chong Yang ◽  
Luca Schweighauser ◽  
Chokri Boumrifak ◽  
Andreas Dreuw ◽  
...  

We have investigated the ultrafast dynamics of o-, m- and p-bisazobenzenes, which represent elementary building blocks for photoswitchable multiazobenzene nanostructures.


2006 ◽  
Vol 978 ◽  
Author(s):  
Theodor Ackbarow ◽  
Markus J. Buehler

AbstractCoiled-coil alpha-helical dimers are the elementary building blocks of intermediate filaments (IFs), an important component of the cell's cytoskeleton. Therefore, IFs play a leading role in the mechanical integrity of the cells. Here we use atomistic simulation to carry out tensile tests on coiled-coils as well as on single alpha-helices of the 2B segment of the vimentin dimer that has been shown to control the large-deformation behavior of cells. We compare the characteristic force-strain curves of both structures and suggest explanations for the differences on this fundamental level of hierarchical assembly. We further systematically explore the strain rate dependence of the mechanical properties of the vimentin coiled-coil protein. We develop a simple continuum model capable of reproducing the atomistic modeling results. The model enables us to extrapolate to much lower deformation rates approaching those used in experiment.


2010 ◽  
Vol 132 (44) ◽  
pp. 15632-15636 ◽  
Author(s):  
Nadav Amdursky ◽  
Michel Molotskii ◽  
Ehud Gazit ◽  
Gil Rosenman

2004 ◽  
Vol 19 (24) ◽  
pp. 4127-4163 ◽  
Author(s):  
A. ALEXANDROV ◽  
A. MOROZOV ◽  
A. MIRONOV

Even though matrix model partition functions do not exhaust the entire set of τ-functions relevant for string theory, they seem to be elementary building blocks for many others and they seem to properly capture the fundamental symplicial nature of quantum gravity and string theory. We propose to consider matrix model partition functions as new special functions. Here we restrict our consideration to the finite-size Hermitian 1-matrix model and concentrate mostly on its phase/branch structure arising when the partition function is considered as a D-module. We discuss the role of the CIV–DV prepotential (as generating a possible basis in the linear space of solutions to the Virasoro constraints, but with a lack of understanding of why and how this basis is distinguished).


2020 ◽  
Vol 17 (171) ◽  
pp. 20200543
Author(s):  
Jonathan Hiller ◽  
Joni Mici ◽  
Hod Lipson

Many complex natural and artificial systems are composed of large numbers of elementary building blocks, such as organisms made of many biological cells or processors made of many electronic transistors. This modular substrate is essential to the evolution of biological and technological complexity, but has been difficult to replicate for mechanical systems. This study seeks to answer if layered assembly can engender exponential gains in the speed and efficacy of block or cell-based manufacturing processes. A key challenge is how to deterministically assemble large numbers of small building blocks in a scalable manner. Here, we describe two new layered assembly principles that allow assembly faster than linear time, integrating n modules in O( n 2/3 ) and O( n 1/3 ) time: one process uses a novel opto-capillary effect to selectively deposit entire layers of building blocks at a time, and a second process jets building block rows in rapid succession. We demonstrate the fabrication of multi-component structures out of up to 20 000 millimetre scale spherical building blocks in 3 h. While these building blocks and structures are still simple, we suggest that scalable layered assembly approaches, combined with a growing repertoire of standardized passive and active building blocks could help bridge the meso-scale assembly gap, and open the door to the fabrication of increasingly complex, adaptive and recyclable systems.


2007 ◽  
Vol 90 (22) ◽  
pp. 223115 ◽  
Author(s):  
Zhiping Xu ◽  
Quan-Shui Zheng ◽  
Guanhua Chen

2010 ◽  
Vol 24 (06n07) ◽  
pp. 661-666
Author(s):  
M. DAMNJANOVIĆ ◽  
T. VUKOVIĆ ◽  
I. MILOŠEVIĆ

Quasi one-dimensional systems, including bio-polymers, nanotubes, nanowires, etc., are in focus of material science and technology for more than two decades. Using recently found quasi one-dimensional conformation classes, which are elementary building blocks of all quasi one-dimensional crystals, we make symmetry based study of their diffraction patterns. In particular, we single out the features distinguishing between the classes, thus enabling to characterize each of them. It turns out that this analysis suffices to find out chiral indices of carbon nanotubes.


2006 ◽  
Vol 361 (1476) ◽  
pp. 2239-2259 ◽  
Author(s):  
Jean-Pierre Changeux

The question is raised of the relevance of experimental work with the mouse and some of its genetically modified individuals in the study of consciousness. Even if this species does not go far beyond the level of ‘minimal consciousness’, it may be a useful animal model to examine the elementary building blocks of consciousness using the methods of molecular biology jointly with investigations at the physiological and behavioural levels. These building blocks which are anticipated to be universally shared by higher organisms (from birds to humans) may include: (i) the access to multiple states of vigilance, like wakefulness, sleep, general anaesthesia, etc.; (ii) the capacity for global integration of several sensory and cognitive functions, together with behavioural flexibility resulting in what is referred to as exploratory behaviour, and possibly a minimal form of intentionality. In addition, the contribution of defined neuronal nicotinic receptors species to some of these processes is demonstrated and the data discussed within the framework of recent neurocomputational models for access to consciousness.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lasse Bjørn Kristensen ◽  
Matthias Degroote ◽  
Peter Wittek ◽  
Alán Aspuru-Guzik ◽  
Nikolaj T. Zinner

AbstractArtificial spiking neural networks have found applications in areas where the temporal nature of activation offers an advantage, such as time series prediction and signal processing. To improve their efficiency, spiking architectures often run on custom-designed neuromorphic hardware, but, despite their attractive properties, these implementations have been limited to digital systems. We describe an artificial quantum spiking neuron that relies on the dynamical evolution of two easy to implement Hamiltonians and subsequent local measurements. The architecture allows exploiting complex amplitudes and back-action from measurements to influence the input. This approach to learning protocols is advantageous in the case where the input and output of the system are both quantum states. We demonstrate this through the classification of Bell pairs which can be seen as a certification protocol. Stacking the introduced elementary building blocks into larger networks combines the spatiotemporal features of a spiking neural network with the non-local quantum correlations across the graph.


Sign in / Sign up

Export Citation Format

Share Document