scholarly journals D = (0|2) DIRAC–MAXWELL–EINSTEIN THEORY AS A WAY FOR DESCRIBING SUPERSYMMETRIC QUARTIONS

1994 ◽  
Vol 09 (09) ◽  
pp. 1555-1568 ◽  
Author(s):  
DMITRIJ P. SOROKIN ◽  
DMITRIJ V. VOLKOV

Drawing an analogy with the Dirac theory of fermions interacting with electromagnetic and gravitational field we write down supersymmetric equations of motion and construct a superfield action for particles with spin [Formula: see text] and [Formula: see text] (quartions), where the role of quartion momentum in effective (2+1)-dimensional space–time is played by an Abelian gauge superfield propagating in a basic two-dimensional Grassmann-odd space with a cosmological constant showing itself as the quartion mass. So, the (0|2) (0 even and 2 odd) dimensional model of quartions interacting with the gauge and gravitational field manifests itself as an effective (2 + 1)-dimensional supersymmetric theory.

2015 ◽  
Vol 30 (25) ◽  
pp. 1550147
Author(s):  
Yoshinobu Habara ◽  
Holger B. Nielsen ◽  
Masao Ninomiya

We rederive in a physical manner the Weyl anomaly in two-dimensional space–time by considering the Dirac Sea. It is regularized by some bosonic extra species which are formally negatively counted. In fact, we calculate the trace of the energy–momentum tensor in the Dirac Sea in presence of background gravitational field. It has to be regularized, since the Dirac Sea is bottomless and thus causes divergence. The new regularization method consists in adding various massive bosonic species some of which are to be counted negative in the Dirac Sea. The mass terms in the Lagrangian of the regularization fields have a dependence on the background gravitational field.


2009 ◽  
Vol 18 (04) ◽  
pp. 599-611 ◽  
Author(s):  
ALFRED MOLINA ◽  
NARESH DADHICH

By considering the product of the usual four-dimensional space–time with two dimensional space of constant curvature, an interesting black hole solution has recently been found for Einstein–Gauss–Bonnet gravity. It turns out that this as well as all others could easily be made to radiate Vaidya null dust. However, there exists no Kerr analog in this setting. To get the physical feel of the four-dimensional black hole space–times, we study asymptotic behavior of stresses at the two ends, r → 0 and r → ∞.


1984 ◽  
Vol 62 (7) ◽  
pp. 632-638
Author(s):  
J. G. Williams

The exact solution of the Feynman checkerboard model is given both in terms of the hypergeometric series and in terms of Jacobi polynomials. It is shown how this leads, in the continuous limit, to the Dirac equation in two-dimensional space-time.


2019 ◽  
Author(s):  
Valerio Capraro ◽  
Jim Albert Charlton Everett ◽  
Brian D. Earp

Understanding the cognitive underpinnings of moral judgment is one of most pressing problems in psychological science. Some highly-cited studies suggest that reliance on intuition decreases utilitarian (expected welfare maximizing) judgments in sacrificial moral dilemmas in which one has to decide whether to instrumentally harm (IH) one person to save a greater number of people. However, recent work suggests that such dilemmas are limited in that they fail to capture the positive, defining core of utilitarianism: commitment to impartial beneficence (IB). Accordingly, a new two-dimensional model of utilitarian judgment has been proposed that distinguishes IH and IB components. The role of intuition on this new model has not been studied. Does relying on intuition disfavor utilitarian choices only along the dimension of instrumental harm or does it also do so along the dimension of impartial beneficence? To answer this question, we conducted three studies (total N = 970, two preregistered) using conceptual priming of intuition versus deliberation on moral judgments. Our evidence converges on an interaction effect, with intuition decreasing utilitarian judgments in IH—as suggested by previous work—but failing to do so in IB. These findings bolster the recently proposed two-dimensional model of utilitarian moral judgment, and point to new avenues for future research.


Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 144
Author(s):  
Jan-Willem van Holten

This paper addresses the fate of extended space-time symmetries, in particular conformal symmetry and supersymmetry, in two-dimensional Rindler space-time appropriate to a uniformly accelerated non-inertial frame in flat 1+1-dimensional space-time. Generically, in addition to a conformal co-ordinate transformation, the transformation of fields from Minkowski to Rindler space is accompanied by local conformal and Lorentz transformations of the components, which also affect the Bogoliubov transformations between the associated Fock spaces. I construct these transformations for massless scalars and spinors, as well as for the ghost and super-ghost fields necessary in theories with local conformal and supersymmetries, as arising from coupling to two-dimensional (2-D) gravity or supergravity. Cancellation of the anomalies in Minkowski and in Rindler space requires theories with the well-known critical spectrum of particles that arise in string theory in the limit of infinite strings, and it is relevant for the equivalence of Minkowski and Rindler frame theories.


Sign in / Sign up

Export Citation Format

Share Document