THERMAL TRANSPORT OF MgB2 SUPERCONDUCTORS: INTERPLAY BETWEEN ELECTRON AND LATTICE-IMPURITY SCATTERING

2007 ◽  
Vol 21 (26) ◽  
pp. 4517-4536 ◽  
Author(s):  
DINESH VARSHNEY ◽  
M. NAGAR ◽  
K. K. CHOUDHARY

We use the Kubo model to calculate the lattice contribution to the thermal conductivity (κph) in MgB 2 superconductors. The theory is formulated when heat transfer is limited by the scattering of phonons from defects, grain boundaries, charge carriers, and phonons. The lattice thermal conductivity in normal state of MgB 2 superconductors dominates and is an artifact of strong phonon-impurity and -phonon scattering mechanism. Later on, the electronic contribution to the thermal conductivity (κe) is calculated within relaxation time approximation for π and σ band carriers with s wave symmetry. Such an estimate sets an upper bound on κe and is about 30% of the total heat transfer at room temperature. The validity of the Wiedemann Franz law is also examined and an enhanced Lorenz number is obtained. Both these channels for heat transfer are clubbed and κ tot develops a broad peak at about 120 K, before falling off at higher temperatures weakly. The anomalies reported are well-accounted in terms of the scattering mechanism by phonon and electron with impurities. It is shown that the behavior of the thermal conductivity is determined by competition among the several operating scattering mechanisms for the heat carriers and a balance between electron and lattice contributions. The contribution of carriers toward κ is substantial and is due to the fact that the carriers are condensed and do not carry entropy. We include comparisons with other theoretical calculations on κe and available experimental data. The numerical analysis of heat transfer in the metallic phase of MgB 2 shows similar results as those revealed from experiments.

Author(s):  
Dinesh Varshney ◽  
E. Khan ◽  
Dinesh Choudhary

The thermal conductivity (κ) behavior in La 0.75 Ag 0.25 MnO 3 manganites is investigated by probing the phonon, carrier and magnon scattering sources. The acoustic phonon contribution to the thermal conductivity (κph) is investigated within the Debye-type relaxation rate approximation. The scattering of phonon from defects, grain boundaries, charge carriers, and phonon are the major sources. La 0.75 Ag 0.25 MnO 3 witnesses the dominant κph and is artifact of strong phonon–impurity and phonon–phonon scattering mechanism in the ferromagnetic metallic state. The carrier contribution to the thermal conductivity (κe) is estimated following the Wiedemann–Franz law. In the metallic phase spin waves (κm) also shows the importance. It is noticed that κm increases with a T2 dependence on the temperature. The behavior of thermal conductivity (κ) in La 0.75 Ag 0.25 MnO 3 is determined by competition among the several operating scattering mechanisms for the heat carriers and a balance between electron, magnon, and phonon contributions.


2014 ◽  
Vol 1047 ◽  
pp. 1-3
Author(s):  
Netram Kaurav ◽  
K.K. Choudhary

Thermal conductivity κ (T) of LaFeAsO is theoretically investigated below the spin density wave (SDW) anomaly. The lattice contribution to the thermal conductivity (κph) is discussed within the Debye-type relaxation rate approximation in terms of the acoustic phonon frequency and relaxation time below 150 K. The theory is formulated when heat transfer is limited by the scattering of phonons from defects, grain boundaries, charge carriers, and phonons. The lattice thermal conductivity dominates in LaFeAsO and is an artifact of strong phonon-impurity and-phonon scattering mechanism. Our result indicates that the maximum contribution comes from phonon scatters and various thermal scattering mechanisms provide a reasonable explanation for maximum appeared in κ (T).


2020 ◽  
Vol 90 (1) ◽  
pp. 10102
Author(s):  
Mulugeta Habte Gebru

In this paper electrical and thermal conductivity coefficients of heavily doped n-Silicon have been derived based on parabolic and modified density of states having band tails. The derivation uses Boltzmann transport equation with relaxation time arising from ionized impurity scattering mechanism as a dominant scattering mechanism compared to the phonon scattering mechanism where the calculations are made at room temperature. Note that semi-classical and quantum mechanics treatments are employed during discussion of scattering mechanisms and calculation of transport coefficients for parabolic and modified density of states having band tails considerations. There is significant variation of electrical and thermal conductivity as well as Weidman-Franz ratio as much as 30%, 101.86%, and 0.66% respectively.


2018 ◽  
Vol 35 (4) ◽  
pp. 717-724
Author(s):  
B. Andriyevsky ◽  
W. Janke ◽  
V.Yo. Stadnyk ◽  
M.O. Romanyuk

Abstract An original approach to the theoretical calculations of the heat conductivity of crystals based on the first principles molecular dynamics has been proposed. The proposed approach exploits the kinetic theory of phonon heat conductivity and permits calculating several material properties at certain temperature: specific heat, elastic constant, acoustic velocity, mean phonon scattering time and coefficient of thermal conductivity. The method has been applied to silicon and phosphorus doped silicon crystals and the obtained results have been found to be in satisfactory agreement with corresponding experimental data. The proposed computation technique may be applied to the calculations of heat conductivity of pure and doped semiconductors and isolators.


Author(s):  
Roopam Sharma ◽  
Namita Singh ◽  
Khurshid Akhtar ◽  
R. Khenata ◽  
Dinesh Varshney

The temperature variation of phonon drag thermoelectric power [Formula: see text] is computed within the relaxation time approximation for high temperature MgB2 superconductors. The phonon drag thermoelectric power ([Formula: see text] in normal state of MgB2 superconductors dominates and is an artifact of strong phonon-impurity and phonon scattering mechanism. The carrier diffusive thermoelectric power is explored when heat transfer is limited by the scattering of phonons from defects, grain boundaries, phonons and charge carriers. The carrier diffusion contribution to the thermoelectric power ([Formula: see text] is analyzed keeping in mind the inherent two energy gaps. The conductivity within the relaxation time approximation for [Formula: see text] and [Formula: see text] band carriers has been taken into account ignoring a possible energy dependence of the scattering rates. Such an estimate sets an upperbound on [Formula: see text] and is about 50% of total heat transfer at room temperature. Both these channels for heat transfer are added and [Formula: see text] starts departing from linear temperature dependence at about 150[Formula: see text]K, before increasing at higher temperatures weakly. It is shown that the behavior of the [Formula: see text] is determined by competition among the several operating scattering mechanisms for the heat carriers and a balance between carrier diffusion and phonon drag contributions. The numerical analysis of thermoelectric power in the metallic phase of MgB2 shows similar results as those revealed from experiments. The anomalies reported experimentally are well accounted in terms of the scattering mechanism by phonon drag and carrier scattering with impurities.


MRS Advances ◽  
2019 ◽  
Vol 4 (08) ◽  
pp. 507-513 ◽  
Author(s):  
Dinesh Bommidi ◽  
Ravindra Sunil Dhumal ◽  
Iman Salehinia

ABSTRACTThermal conductivity of a nickel-coated tri-wall carbon nanotube was studied using molecular dynamics where both the phonon and electron contributions were considered. Simulations predicted a significant effect of the metal coating on the thermal conductivity, i.e. 50% decrease for 1.2 nm of Ni coating. However, the decreasing rate of the thermal conductivity is minuscule for the metal thicker than 1.6 nm. The smaller thermal conductivity of the metal coating, phonon scattering at the interface, and less impacted heat transfer on the inner tubes of the carbon nanotube rationalized the observed trends.


2009 ◽  
Vol 08 (06) ◽  
pp. 551-556 ◽  
Author(s):  
K. K. CHOUDHARY ◽  
D. PRASAD ◽  
K. JAYAKUMAR ◽  
DINESH VARSHNEY

We evolve a theoretical model for quantitative analysis of decrease in thermal conductivity (κ) by embedding ErAs nanoparticles in In0.53Ga0.47As crystalline semiconductors. The lattice thermal conductivity by incorporating the scattering of phonons with defects, grain boundaries, electrons, and phonons in the model Hamiltonian are evaluated. It is noticed that the ErAs nanoparticles provide an additional scattering mechanism for phonons. The embedding of ErAs nanoparticles in In0.53Ga0.47As crystalline semiconductors, the phonon scattering with point defects and grain boundaries become more efficient, which cause in the decrease of thermal conductivity up to half of its value of pure crystal. Conclusively, the temperature dependent of thermal conductivity is determined by competition among the several operating scattering mechanisms for the heat carriers. Numerical analysis of thermal conductivity from the present model shows similar results as those revealed from experiments.


1998 ◽  
Vol 545 ◽  
Author(s):  
V. M. Browning ◽  
S. J. Poon ◽  
T. M. Tritt ◽  
A. L Pope ◽  
S. Bhattacharya ◽  
...  

AbstractRecent measurements of the thermoelectric transport properties of a series of the half- Heusler compound ZrNiSn are presented. These materials are known to be bandgap intermetallic compounds with relatively large Seebeck coefficients and semimetallic to semiconducting transport properties. This makes them attractive for study as potential candidates for thermoelectric applications. In this study, trends in the thermoelectric power, electrical conductivity and thermal conductivity are examined as a function of chemical substitution on the various fcc sub-lattices that comprise the half-Heusler crystal structure. These results suggest that the lattice contribution to the thermal conductivity may be reduced by increasing the phonon scattering via chemical substitution. The effects of these substitutions on the overall power factor and figure-of-merit will also be discussed.


Open Physics ◽  
2006 ◽  
Vol 4 (2) ◽  
Author(s):  
Oleg Pursky ◽  
Vyacheslav Konstantinov

AbstractThe isochoric thermal conductivity of an orientationally-disordered phase of CCl4 is analysed within a model in which heat is transferred by phonons and above the phonon mobility edge by ”diffusive” modes migrating randomly from site to site. The mobility edge ω0 is found from the condition that the phonon mean-free path cannot become smaller than half the phonon wavelength. The contributions of phonon-phonon, one-, and two-phonon scattering to the total thermal resistance of solid CCl4 are calcualted under the assumption that the different scattering mechanisms contribute additively. An increase in the isochoric thermal conductivity with temperature is explained by suppression of phonon scattering at rotational excitations due to a decrease in correlation in the rotation of neighbouring molecules.


2017 ◽  
Vol 114 (40) ◽  
pp. 10548-10553 ◽  
Author(s):  
Jun Mao ◽  
Jing Shuai ◽  
Shaowei Song ◽  
Yixuan Wu ◽  
Rebecca Dally ◽  
...  

Achieving higher carrier mobility plays a pivotal role for obtaining potentially high thermoelectric performance. In principle, the carrier mobility is governed by the band structure as well as by the carrier scattering mechanism. Here, we demonstrate that by manipulating the carrier scattering mechanism in n-type Mg3Sb2-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved. In this work, Fe, Co, Hf, and Ta are doped on the Mg site of Mg3.2Sb1.5Bi0.49Te0.01, where the ionized impurity scattering crosses over to mixed ionized impurity and acoustic phonon scattering. A significant improvement in Hall mobility from ∼16 to ∼81 cm2⋅V−1⋅s−1 is obtained, thus leading to a notably enhanced power factor of ∼13 μW⋅cm−1⋅K−2 from ∼5 μW⋅cm−1⋅K−2. A simultaneous reduction in thermal conductivity is also achieved. Collectively, a figure of merit (ZT) of ∼1.7 is obtained at 773 K in Mg3.1Co0.1Sb1.5Bi0.49Te0.01. The concept of manipulating the carrier scattering mechanism to improve the mobility should also be applicable to other material systems.


Sign in / Sign up

Export Citation Format

Share Document