Electrical and thermal conductivity of heavily doped n-type silicon

2020 ◽  
Vol 90 (1) ◽  
pp. 10102
Author(s):  
Mulugeta Habte Gebru

In this paper electrical and thermal conductivity coefficients of heavily doped n-Silicon have been derived based on parabolic and modified density of states having band tails. The derivation uses Boltzmann transport equation with relaxation time arising from ionized impurity scattering mechanism as a dominant scattering mechanism compared to the phonon scattering mechanism where the calculations are made at room temperature. Note that semi-classical and quantum mechanics treatments are employed during discussion of scattering mechanisms and calculation of transport coefficients for parabolic and modified density of states having band tails considerations. There is significant variation of electrical and thermal conductivity as well as Weidman-Franz ratio as much as 30%, 101.86%, and 0.66% respectively.

2007 ◽  
Vol 21 (26) ◽  
pp. 4517-4536 ◽  
Author(s):  
DINESH VARSHNEY ◽  
M. NAGAR ◽  
K. K. CHOUDHARY

We use the Kubo model to calculate the lattice contribution to the thermal conductivity (κph) in MgB 2 superconductors. The theory is formulated when heat transfer is limited by the scattering of phonons from defects, grain boundaries, charge carriers, and phonons. The lattice thermal conductivity in normal state of MgB 2 superconductors dominates and is an artifact of strong phonon-impurity and -phonon scattering mechanism. Later on, the electronic contribution to the thermal conductivity (κe) is calculated within relaxation time approximation for π and σ band carriers with s wave symmetry. Such an estimate sets an upper bound on κe and is about 30% of the total heat transfer at room temperature. The validity of the Wiedemann Franz law is also examined and an enhanced Lorenz number is obtained. Both these channels for heat transfer are clubbed and κ tot develops a broad peak at about 120 K, before falling off at higher temperatures weakly. The anomalies reported are well-accounted in terms of the scattering mechanism by phonon and electron with impurities. It is shown that the behavior of the thermal conductivity is determined by competition among the several operating scattering mechanisms for the heat carriers and a balance between electron and lattice contributions. The contribution of carriers toward κ is substantial and is due to the fact that the carriers are condensed and do not carry entropy. We include comparisons with other theoretical calculations on κe and available experimental data. The numerical analysis of heat transfer in the metallic phase of MgB 2 shows similar results as those revealed from experiments.


Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

Using the linearized Boltzmann transport equation and perturbation theory, we analyze the reduction in the intrinsic thermal conductivity of few-layer graphene sheets accounting for all possible three-phonon scattering events. Even with weak coupling between layers, a significant reduction in the thermal conductivity of the out-of-plane acoustic modes is apparent. The main effect of this weak coupling is to open many new three-phonon scattering channels that are otherwise absent in graphene. The highly restrictive selection rule that leads to a high thermal conductivity of ZA phonons in single-layer graphene is only weakly broken with the addition of multiple layers, and ZA phonons still dominate thermal conductivity. We also find that the decrease in thermal conductivity is mainly caused by decreased contributions of the higher-order overtones of the fundamental out-of-plane acoustic mode. Moreover, the extent of reduction is largest when going from single to bilayer graphene and saturates for four layers. The results compare remarkably well over the entire temperature range with measurements of of graphene and graphite.


Author(s):  
Boris Kozinsky ◽  
David J. Singh

The performance of thermoelectric materials is determined by their electrical and thermal transport properties that are very sensitive to small modifications of composition and microstructure. Discovery and design of next-generation materials are starting to be accelerated by computational guidance. We review progress and challenges in the development of accurate and efficient first-principles methods for computing transport coefficients and illustrate approaches for both rapid materials screening and focused optimization. Particularly important and challenging are computations of electron and phonon scattering rates that enter the Boltzmann transport equations, and this is where there are many opportunities for improving computational methods. We highlight the first successful examples of computation-driven discoveries of high-performance materials and discuss avenues for tightening the interaction between theoretical and experimental materials discovery and optimization. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Bo Qiu ◽  
Hua Bao ◽  
Xiulin Ruan

In this paper, thermoelectric properties of bulk PbTe are calculated using first principles calculations and molecular dynamics simulations. The Full Potential Linearized Augmented Plane Wave (FP-LAPW) method is first employed to calculate the PbTe band structure. The transport coefficients (Seebeck coefficient, electrical conductivity, and electron thermal conductivity) are then computed using Boltzmann transport equation (BTE) under the constant relaxation time approximation. Interatomic pair potentials in the Buckingham form are also derived using ab initio effective charges and total energy data. The effective interatomic pair potentials give excellent results on equilibrium lattice parameters and elastic constants for PbTe. The lattice thermal conductivity of PbTe is then calculated using molecular dynamics simulations with the Green-Kubo method. In the end, the figure of merit of PbTe is computed revealing the thermoelectric capability of this material, and the multiscale simulation approach is shown to have the potential to identify novel thermoelectric materials.


2019 ◽  
Vol 10 ◽  
pp. 2031-2038
Author(s):  
Wenwen Zheng ◽  
Wei Cao ◽  
Ziyu Wang ◽  
Huixiong Deng ◽  
Jing Shi ◽  
...  

We have investigated the thermoelectric properties of a pristine MoO3 monolayer and its defective structures with different oxygen vacancies using first-principles methods combined with Boltzmann transport theory. Our results show that the thermoelectric properties of the MoO3 monolayer exhibit an evident anisotropic behavior which is caused by the similar anisotropy of the electrical and thermal conductivity. The thermoelectric materials figure of merit (ZT) value along the x- and the y-axis is 0.72 and 0.08 at 300 K, respectively. Moreover, the creation of oxygen vacancies leads to a sharp peak near the Fermi level in the density of states. This proves to be an effective way to enhance the ZT values of the MoO3 monolayer. The increased ZT values can reach 0.84 (x-axis) and 0.12 (y-axis) at 300 K.


1991 ◽  
Vol 234 ◽  
Author(s):  
Cronin B. Vining

ABSTRACTA model is presented for the high temperature transport properties of large grain size, heavily doped p-type silicon-germanium alloys. Good agreement with experiment (±10%) is found by considering acoustic phonon and ionized impurity scattering for holes and phonon-phonon, point defect and hole-phonon scattering for phonons. Phonon scattering by holes is found to be substantially weaker than phonon scattering by electrons, which accounts for the larger thermal conductivity values of ptype silicon-germanium alloys compared to similarly doped n-type silicongermanium alloys. The relatively weak scattering of long-wavelength phonons by holes raises the possibility that p-type silicon-germanium alloys may be improved for thermoelectric applications by the addition of an additional phonon scattering mechanism which is effective on intermediate and long-wavelength phonons. Calculations indicate improvements in the thermoelectric figure of merit up to 40% may be possible by incorporating several volume percent of 20 Å radius inclusions into p-type silicon-germanium alloys.


Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

This paper examines the thermodynamic and thermal transport properties of the 2D graphene lattice. The interatomic interactions are modeled using the Tersoff interatomic potential and are used to evaluate phonon dispersion curves, density of states and thermodynamic properties of graphene as functions of temperature. Perturbation theory is applied to calculate the transition probabilities for three-phonon scattering. The matrix elements of the perturbing Hamiltonian are calculated using the anharmonic interatomic force constants obtained from the interatomic potential as well. An algorithm to accurately quantify the contours of energy balance for three-phonon scattering events is presented and applied to calculate the net transition probability from a given phonon mode. Under the linear approximation, the Boltzmann transport equation (BTE) is applied to compute the thermal conductivity of graphene, giving spectral and polarization-resolved information. Predictions of thermal conductivity for a wide range of parameters elucidate the behavior of diffusive phonon transport. The complete spectral detail of selection rules, important phonon scattering pathways, and phonon relaxation times in graphene are provided, contrasting graphene with other materials, along with implications for graphene electronics. We also highlight the specific scattering processes that are important in Raman spectroscopy based measurements of graphene thermal conductivity, and provide a plausible explanation for the observed dependence on laser spot size.


2021 ◽  
Author(s):  
Taher Meydando ◽  
Nazli Donmezer

Abstract Micro-Raman spectroscopy has been preferred recently to measure the thermal conductivity of thin-films due to its nondestructive and non-contact nature. However, the thermal size effects originating from both localized heat generation from Raman laser and phonon scattering at boundaries may cause erroneous estimation of the thermal conductivities with the current approach. In this study, the gray phonon Boltzmann transport equation (BTE) is solved to improve the results of micro-Raman thermal conductivity measurements. Due to the frequency independence of single phonon mode in the gray BTE model, our method stays ahead of most theoretical methods in calculation time while giving adequate agreement with the literature data. The improved thermal conductivities are evaluated at various laser powers and focal lengths. Subsequently, the values of thermal conductivities are compared with a simple slab model in which the deduction of thermal conductivity in sub-micron thicknesses is calculated using reduced heat flux through the slab resulting from phonon directional energy densities. The results show that subsequent errors are present in measuring the thermal conductivity of relatively thick, thin films with this technique which are noticed by comparing with the simple slab model. Finally, a virtual micro-Raman thermography experiment is developed, and its validity is verified by the same slab model.


2009 ◽  
Vol 08 (06) ◽  
pp. 551-556 ◽  
Author(s):  
K. K. CHOUDHARY ◽  
D. PRASAD ◽  
K. JAYAKUMAR ◽  
DINESH VARSHNEY

We evolve a theoretical model for quantitative analysis of decrease in thermal conductivity (κ) by embedding ErAs nanoparticles in In0.53Ga0.47As crystalline semiconductors. The lattice thermal conductivity by incorporating the scattering of phonons with defects, grain boundaries, electrons, and phonons in the model Hamiltonian are evaluated. It is noticed that the ErAs nanoparticles provide an additional scattering mechanism for phonons. The embedding of ErAs nanoparticles in In0.53Ga0.47As crystalline semiconductors, the phonon scattering with point defects and grain boundaries become more efficient, which cause in the decrease of thermal conductivity up to half of its value of pure crystal. Conclusively, the temperature dependent of thermal conductivity is determined by competition among the several operating scattering mechanisms for the heat carriers. Numerical analysis of thermal conductivity from the present model shows similar results as those revealed from experiments.


2017 ◽  
Vol 114 (40) ◽  
pp. 10548-10553 ◽  
Author(s):  
Jun Mao ◽  
Jing Shuai ◽  
Shaowei Song ◽  
Yixuan Wu ◽  
Rebecca Dally ◽  
...  

Achieving higher carrier mobility plays a pivotal role for obtaining potentially high thermoelectric performance. In principle, the carrier mobility is governed by the band structure as well as by the carrier scattering mechanism. Here, we demonstrate that by manipulating the carrier scattering mechanism in n-type Mg3Sb2-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved. In this work, Fe, Co, Hf, and Ta are doped on the Mg site of Mg3.2Sb1.5Bi0.49Te0.01, where the ionized impurity scattering crosses over to mixed ionized impurity and acoustic phonon scattering. A significant improvement in Hall mobility from ∼16 to ∼81 cm2⋅V−1⋅s−1 is obtained, thus leading to a notably enhanced power factor of ∼13 μW⋅cm−1⋅K−2 from ∼5 μW⋅cm−1⋅K−2. A simultaneous reduction in thermal conductivity is also achieved. Collectively, a figure of merit (ZT) of ∼1.7 is obtained at 773 K in Mg3.1Co0.1Sb1.5Bi0.49Te0.01. The concept of manipulating the carrier scattering mechanism to improve the mobility should also be applicable to other material systems.


Sign in / Sign up

Export Citation Format

Share Document