INTERFACE THERMAL RESISTANCE BETWEEN FRENKEL-KONTOROVA AND FERMI-PASTA-ULAM LATTICES

2007 ◽  
Vol 21 (23n24) ◽  
pp. 4013-4016 ◽  
Author(s):  
JINGHUA LAN ◽  
LEI WANG ◽  
BAOWEN LI

By connecting two dissimilar anharmonic lattices exemplified by Fermi-Pasta-Ulam (FPU) model and Frenkel-kontorova (FK) model, we successfully build up one dimensional thermal diode. We find the rectifying effect is closely related to asymmetric interface thermal resistance (Kapitza resistance). And the asymmetric thermal resistance depends on how the temperature gradient is applied. Moreover, a qualitative relationship between the thermal rectification and the phonon spectra is proposed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maryam Zarghami Dehaghani ◽  
Fatemeh Molaei ◽  
Farrokh Yousefi ◽  
S. Mohammad Sajadi ◽  
Amin Esmaeili ◽  
...  

AbstractSimulation of thermal properties of graphene hetero-nanosheets is a key step in understanding their performance in nano-electronics where thermal loads and shocks are highly likely. Herein we combine graphene and boron-carbide nanosheets (BC3N) heterogeneous structures to obtain BC3N-graphene hetero-nanosheet (BC3GrHs) as a model semiconductor with tunable properties. Poor thermal properties of such heterostructures would curb their long-term practice. BC3GrHs may be imperfect with grain boundaries comprising non-hexagonal rings, heptagons, and pentagons as topological defects. Therefore, a realistic picture of the thermal properties of BC3GrHs necessitates consideration of grain boundaries of heptagon-pentagon defect pairs. Herein thermal properties of BC3GrHs with various defects were evaluated applying molecular dynamic (MD) simulation. First, temperature profiles along BC3GrHs interface with symmetric and asymmetric pentagon-heptagon pairs at 300 K, ΔT = 40 K, and zero strain were compared. Next, the effect of temperature, strain, and temperature gradient (ΔT) on Kaptiza resistance (interfacial thermal resistance at the grain boundary) was visualized. It was found that Kapitza resistance increases upon an increase of defect density in the grain boundary. Besides, among symmetric grain boundaries, 5–7–6–6 and 5–7–5–7 defect pairs showed the lowest (2 × 10–10 m2 K W−1) and highest (4.9 × 10–10 m2 K W−1) values of Kapitza resistance, respectively. Regarding parameters affecting Kapitza resistance, increased temperature and strain caused the rise and drop in Kaptiza thermal resistance, respectively. However, lengthier nanosheets had lower Kapitza thermal resistance. Moreover, changes in temperature gradient had a negligible effect on the Kapitza resistance.


2015 ◽  
Vol 46 (2) ◽  
pp. 175-183
Author(s):  
Shuang LUO ◽  
Jun WANG ◽  
Jue WANG ◽  
YuXin ZHU ◽  
GuoDong XIA

Author(s):  
Youngsuk Son ◽  
Monalisa Mazumder ◽  
Theodorian Borca-Tasciuc

Developing a fundamental understanding regarding energy flow across nanoscale interfaces is critical in realizing viable nanoelectronics device systems and efficient low-dimensional thermoelectric devices. This work presents investigations of the interface thermal resistance (ITR) in a nanoelectrode-on-substrate system using the DC heating as well as the 3ω method.


Author(s):  
Masahiko Shibahara ◽  
Kosuke Inoue ◽  
Kiyomori Kobayashi

The classical molecular dynamics simulation was conducted in order to clarify the effects of structural clearances in nanometer scale on thermal resistance at a liquid-solid interface. A liquid molecular region confined between the solid walls, of which the interparticle potential was Lennard-Jones type, was employed as a calculation system. The solid walls consisted of three atomic layers where the temperature of the middle layer was controlled by the Langevin method. Heat flux in the system was calculated numerically by integrating the forces that acted on the temperature controlled atoms by the Langevin method. The temperature jump between the solid wall and the liquid molecular region was calculated numerically. The thermal resistance at a liquid-solid interface was calculated numerically with changing the surface structural clearances in nanometer scale. Temperature gradient and liquid density were also changed as calculation parameters. With changing the surface structural clearances from 0nm to 2.5nm the thermal resistance at the interface once decreased and became the minimum value when the structural clearances were between 0.6 to 1.0 nm. The thermal resistance between the solid and the liquid increased when the structural clearances were more than 1.0nm. With the increase of the liquid density the thermal resistance between the solid and the liquid substantially decreased regardless of the temperature gradient and the surface structures in nanometer scale.


Author(s):  
Koji Nishi ◽  
Tomoyuki Hatakeyama ◽  
Shinji Nakagawa ◽  
Masaru Ishizuka

The thermal network method has a long history with thermal design of electronic equipment. In particular, a one-dimensional thermal network is useful to know the temperature and heat transfer rate along each heat transfer path. It also saves computation time and/or computation resources to obtain target temperature. However, unlike three-dimensional thermal simulation with fine pitch grids and a three-dimensional thermal network with sufficient numbers of nodes, a traditional one-dimensional thermal network cannot predict the temperature of a microprocessor silicon die hot spot with sufficient accuracy in a three-dimensional domain analysis. Therefore, this paper introduces a one-dimensional thermal network with average temperature nodes. Thermal resistance values need to be obtained to calculate target temperature in a thermal network. For this purpose, thermal resistance calculation methodology with simplified boundary conditions, which calculates thermal resistance values from an analytical solution, is also introduced in this paper. The effectiveness of the methodology is explored with a simple model of the microprocessor system. The calculated result by the methodology is compared to a three-dimensional heat conduction simulation result. It is found that the introduced technique matches the three-dimensional heat conduction simulation result well.


Sign in / Sign up

Export Citation Format

Share Document