A universal scaling behavior in magnetic resonance peak in high temperature superconductivity

2015 ◽  
Vol 29 (25n26) ◽  
pp. 1542003 ◽  
Author(s):  
Seung Joon Shin ◽  
Sung-Ho Suck Salk

Eminent inelastic neutron scattering (INS) measurements of high temperature cuprates currently lacking theoretical interpretations are the observed temperature dependence of magnetic resonance peak and linear scaling relation between the resonance peak energy, [Formula: see text] and the superconducting transition temperature, [Formula: see text]. Using our slave-boson approach of the [Formula: see text]–[Formula: see text] Hamiltonian (Phys. Rev. 64, 052501 (2001)) for this study, we show that starting from the pseudogap temperature [Formula: see text], the magnetic resonance peak increases with decreasing temperature, revealing its inflection point at [Formula: see text] and that spin pairing correlations are responsible for [Formula: see text]-wave superconductivity. We find that there exists a universal linear scaling behavior of [Formula: see text], irrespective of the Heisenberg exchange coupling.

2018 ◽  
Vol 787 ◽  
pp. 31-36
Author(s):  
Yu Lan ◽  
Lü Lin Kuang

Within the kinetic energy driven superconducting mechanism, we have studied the temperature dependence of commensurate magnetic resonance in cuprate superconductors. It is shown that the commensurate magnetic resonance peak at the antiferromagnetic wave vector point persists in the superconducting state until the temperature rises to the superconducting transition temperature $T_{\rm c}$. The intensity of the resonance peak decreases with increasing temperature which is just like the temperature dependence of the superconducting gap parameter. Our results are in qualitative agreement with the inelastic neutron scattering experimental data and reflect that the commensurate magnetic resonance is closely related to the creation of the charge carrier pairs and thus the superconducting mechanism of cuprate superconductors.


1998 ◽  
Vol 12 (29n31) ◽  
pp. 3330-3334 ◽  
Author(s):  
Y. Sidis ◽  
P. Bourges ◽  
B. Hennion ◽  
R. Villeneuve ◽  
G. Collin ◽  
...  

Inelastic neutron scattering measurements have been carried out on a YBa2(Cu0.98-Zn0.02)3O 6+x single crystal in both underdoped (x = 0.7) and overdoped (x = 0.97) regimes. In the zinc substituted system, spin dynamics is drastically changed in respect to the pure compound: (i) the "resonance peak" almost vanishes, (ii) the spin gap is filled, (iii) new antiferromagnetic excitations are found at low energy. These new magnetic fluctuations, which persist in the normal state, account for a local enhancement of AF correlations around nonmagnetic impurities. Besides, it is worth emphasizing that features, not directly related to superconductivity, i.e., the contribution to the spin dynamics apart from the resonance peak and the "spin pseudo-gap" observed in the underdoped regime above T c , coexist with the new low energy magnetic fluctuations.


2015 ◽  
Vol 10 (2) ◽  
pp. 83-90
Author(s):  
Maxim Korshunov ◽  
Yuliya Togushova

We have considered the impact of the nontrivial superconducting order parameter on the magnetic susceptibility within the multiorbital model for the iron-based materials. The formation of the spin-resonance peak is demonstrated and its connection to the experimental data on the inelastic neutron scattering is discussed.


MRS Bulletin ◽  
1988 ◽  
Vol 13 (10) ◽  
pp. 56-61 ◽  
Author(s):  
H.J. Scheel ◽  
F. Licci

The discovery of high temperature superconductivity (HTSC) in oxide compounds has confronted materials scientists with many challenging problems. These include the preparation of ceramic samples with critical current density of about 106 A/cm2 at 77 K and sufficient mechanical strength for large-scale electrotechnical and magnetic applications and the preparation of epitaxial thin films of high structural perfection for electronic devices.The main interest in the growth of single crystals is for the study of physical phenomena, which will help achieve a theoretical understanding of HTSC. Theorists still do not agree on the fundamental mechanisms of HTSC, and there is a need for good data on relatively defect-free materials in order to test the many models. In addition, the study of the role of defects like twins, grain boundaries, and dislocations in single crystals is important for understanding such parameters as the critical current density. The study of HTSC with single crystals is also expected to be helpful for finding optimum materials for the various applications and hopefully achieving higher values of the superconducting transition temperature Tc than the current maximum of about 125 K. It seems unlikely at present that single crystals will be used in commercial devices, but this possibility cannot be ruled out as crystal size and quality improve.


2021 ◽  
Vol 118 (28) ◽  
pp. e2108938118
Author(s):  
Liangzi Deng ◽  
Trevor Bontke ◽  
Rabin Dahal ◽  
Yu Xie ◽  
Bin Gao ◽  
...  

To raise the superconducting-transition temperature (Tc) has been the driving force for the long-sustained effort in superconductivity research. Recent progress in hydrides with Tcs up to 287 K under pressure of 267 GPa has heralded a new era of room temperature superconductivity (RTS) with immense technological promise. Indeed, RTS will lift the temperature barrier for the ubiquitous application of superconductivity. Unfortunately, formidable pressure is required to attain such high Tcs. The most effective relief to this impasse is to remove the pressure needed while retaining the pressure-induced Tc without pressure. Here, we show such a possibility in the pure and doped high-temperature superconductor (HTS) FeSe by retaining, at ambient pressure via pressure quenching (PQ), its Tc up to 37 K (quadrupling that of a pristine FeSe at ambient) and other pressure-induced phases. We have also observed that some phases remain stable without pressure at up to 300 K and for at least 7 d. The observations are in qualitative agreement with our ab initio simulations using the solid-state nudged elastic band (SSNEB) method. We strongly believe that the PQ technique developed here can be adapted to the RTS hydrides and other materials of value with minimal effort.


1995 ◽  
Vol 400 ◽  
Author(s):  
R. M. Stroud ◽  
A. M. Viano ◽  
E. H. Majzoub ◽  
P. C. Gibbons ◽  
K. F. Kelton

AbstractTitanium-based icosahedral phases constitute the second largest class of quasicrystals. In contrast with other Ti-based icosahedral phases (i-phases), Ti-Zr-Ni i-phases are well ordered and their formation is inhibited by the presence of Si and O, elements that stabilize the Ti-3d transition metal quasicrystals. We present x-ray and DSC data that suggest that Ti-Zr-Ni i-phases form a different class of titanium-based quasicrystals that are closely related to the MgZn2 Laves phase. The DSC data also suggest that the i-phase may be stable in these alloys. The ability of Ti-Zr-Ni i-phases to absorb up to 62 atomic % of hydrogen is presented and discussed. This opens new avenues of investigation of the structure and dynamics of quasiperiodic phases using elastic and inelastic neutron scattering and nuclear magnetic resonance and may point to potential uses for quasicrystals in hydrogen storage applications.


Sign in / Sign up

Export Citation Format

Share Document