First principles investigation of structural, vibrational and thermal properties of black and blue phosphorene

2018 ◽  
Vol 32 (12) ◽  
pp. 1850151 ◽  
Author(s):  
R. M. Arif Khalil ◽  
Javed Ahmad ◽  
Anwar Manzoor Rana ◽  
Syed Hamad Bukhari ◽  
M. Tufiq Jamil ◽  
...  

In this investigation, structural, dynamical and thermal properties of black and blue phosphorene (P) are presented through the first principles calculations based on the density functional theory (DFT). These DFT calculations depict that due to the approximately same values of ground state energy at zero Kelvin and Helmholtz free energy at room-temperature, it is expected that both structures can coexist at transition temperature. Lattice dynamics of both phases were investigated by using the finite displacement supercell approach. It is noticed on the basis of harmonic approximation thermodynamic calculations that the blue phase is thermodynamically more stable than the black phase above 155 K.

Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


2010 ◽  
Vol 25 (6) ◽  
pp. 1030-1036 ◽  
Author(s):  
Pengxian Lu ◽  
Zigang Shen ◽  
Xing Hu

To investigate the effects of substituting Ag and Sb for Pb on the thermoelectric properties of PbTe, the electronic structures of PbTe and AgPb18SbTe20 were calculated by using the linearized augmented plane wave based on the density-functional theory of the first principles. By comparing the differences in the band structure, the partial density of states (PDOS), the scanning transmission microscope, and the electron density difference for PbTe and AgPb18SbTe20, we explained the reason from the aspect of electronic structures why the thermoelectric properties of AgPb18SbTe20 could be improved significantly. Our results suggest that the excellent thermoelectric properties of AgPb18SbTe20 should be attributed in part to the narrowing of its band gap, band structure anisotropy, the much extrema and large DOS near Fermi energy, as well as the large effective mass of electrons. Moreover, the complex bonding behaviors for which the strong bonds and the weak bonds are coexisted, and the electrovalence and covalence of Pb–Te bond are mixed should also play an important role in the enhancement of the thermoelectric properties of the AgPb18SbTe20.


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 31968-31975 ◽  
Author(s):  
Shuai Zhao ◽  
Liguo Gao ◽  
Chunfeng Lan ◽  
Shyam S. Pandey ◽  
Shuzi Hayase ◽  
...  

In this work, we present a detailed first-principles investigation on the stoichiometric and oxygen-deficient structures of double perovskites, Sr2BMoO6 (B = Mg, Co and Ni), using the density functional theory (DFT) method.


2009 ◽  
Vol 64 (5-6) ◽  
pp. 399-404 ◽  
Author(s):  
Zi-Jiang Liu ◽  
Xiao-Ming Tan ◽  
Yuan Guo ◽  
Xiao-Ping Zheng ◽  
Wen-Zhao Wu

The thermodynamic properties of tetragonal CaSiO3 perovskite are predicted at high pressures and temperatures using the Debye model for the first time. This model combines the ab initio calculations within local density approximation using pseudopotentials and a plane wave basis in the framework of density functional theory, and it takes into account the phononic effects within the quasi-harmonic approximation. It is found that the calculated equation of state is in excellent agreement with the observed values at ambient condition. Based on the first-principles study and the Debye model, the thermal properties including the Debye temperature, the heat capacity, the thermal expansion and the entropy are obtained in the whole pressure range from 0 to 150 GPa and temperature range from 0 to 2000 K.


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Víctor Mendoza-Estrada ◽  
Melissa Romero-Baños ◽  
Viviana Dovale-Farelo ◽  
William López-Pérez ◽  
Álvaro González-García ◽  
...  

In this research, first-principles calculations were carried out within the density functional theory (DFT) framework, using LDA and GGA, in order to study the structural, elastic, electronic and thermal properties of InAs in the zinc-blende structure. The results of the structural properties (a, B0, ) agree with the theoretical and experimental results reported by other authors. Additionally, the elastic properties, the elastic constants (C11, C12 and C44), the anisotropy coefficient (A) and the predicted speeds of the sound ( , , and ) are in agreement with the results reported by other authors. In contrast, the shear modulus (G), the Young's modulus (Y) and the Poisson's ratio (v) show some discrepancy with respect to the experimental values, although, the values obtained are reasonable. On the other hand, it is evident the tendency of the LDA and GGA approaches to underestimate the value of the band-gap energy in semiconductors. The thermal properties (V, , θD yCV) of InAs, calculated using the quasi-harmonic Debye model, are slightly sensitive as the temperature increases. According to the stability criteria and the negative value of the enthalpy of formation, InAs is mechanically and thermodynamically stable. Therefore, this work can be used as a future reference for theoretical and experimental studies based on InAs.


2019 ◽  
Vol 27 (4) ◽  
pp. 420-430
Author(s):  
D. P. Krylov

Zircon β-factors have been calibrated against temperature for isotopic substitutions of 18O/16O and 30Si/28Si. Calculations were performed using the density functional theory (DFT) with the “frozen phonon” approach. The deduced geometric parameters of the zircon unit cell, and the phonon frequencies calculated, agree well with the experimental data. The results are expressed by the cubic polynomials on x = 106/T(K)2: 1000lnβzrn(18O/16O) = 9.83055x – 0.19499x2 + 0.00388x3;  1000lnβzrn(30Si/28Si) = 7.89907x – 0.17978x2 + 0.00377x3. The expressions deduced can be utilized to construct geothermometers if combined with β-factors of coexisting phases. New calibrations of quartz-zircon are given. The new values of 1000lnβzrn and the estimated isotope fractionation factors between quartz and zircon (1000lnβqtz–1000lnβzrn) deviate considerably from previously used experimental, empirical, and semi-empirical calibration of the isotopic equilibrium.


2018 ◽  
Vol 32 (14) ◽  
pp. 1850169
Author(s):  
Leini Wang ◽  
Zhang Jian ◽  
Wei Ning

The phonon, elastic and thermodynamic properties of L12phase Rh3Ta have been investigated by the density functional theory (DFT) approach combined with the quasi-harmonic approximation model. The results of the phonon band structure show that L12phase Rh3Ta possesses dynamical stability in the pressure range from 0–80 GPa due to the absence of imaginary frequencies. The pressure dependences with the elastic constants C[Formula: see text], shear modulus G, bulk modulus B, Young’s modulus Y, Poisson’s ratio and B/G ratio have been analyzed. The results of the elastic properties studies show that L12phase Rh3Ta compound is mechanically stable and possesses a higher hardness, improved ductility and plasticity under higher pressures. The pressure and temperature relationship of the thermodynamic properties, such as the Debye temperature [Formula: see text], heat capacity C[Formula: see text], thermal expansion coefficient [Formula: see text] and the Grüneisen parameter [Formula: see text] are predicted by the quasi-harmonic Debye model in a wide pressure (0–80 GPa) and temperature (0–750 K) ranges.


2021 ◽  
Vol 871 ◽  
pp. 254-263
Author(s):  
Zhan Cheng ◽  
Guan Xing Zhang ◽  
Wei Min Long ◽  
Svitlana Maksymova ◽  
Jian Xiu Liu

The first-principles calculations by CASTEP program based on the density functional theory is applied to calculate the cohesive energy, enthalpy of formation, elastic constant, density of states and Mulliken population of Ag3Sn、AgZn3 and Ag5Zn8. Furthermore, the elastic properties, bonding characteristics, and intrinsic connections of different phases are investigated. The results show that Ag3Sn、AgZn3 and Ag5Zn8 have stability structural, plasticity characteristics and different degrees of elastic anisotropy; Ag3Sn is the most stable structural, has the strongest alloying ability and the best plasticity. AgZn3 is the most unstable structure, has the worst plasticity; The strength of Ag5Zn8 is strongest, AgZn3 has the weakest strength, the largest shear resistance, and the highest hardness. Ag5Zn8 has the maximum Anisotropy index and Ag3Sn has the minimum Anisotropy index. Ag3Sn、AgZn3 and Ag5Zn8 are all have covalent bonds and ionic bonds, the ionic bonds decrease in the order Ag3Sn>Ag5Zn8>AgZn3 and covalent bonds decreases in the order Ag5Zn8>Ag3Sn>AgZn3.


RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25900-25911 ◽  
Author(s):  
Esmaeil Pakizeh ◽  
Jaafar Jalilian ◽  
Mahnaz Mohammadi

In this study, based on the density functional theory and semi-classical Boltzmann transport theory, we investigated the structural, thermoelectric, optical and phononic properties of the Fe2ZrP compound.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 100 ◽  
Author(s):  
Weiwei Wang ◽  
Dahuai Zheng ◽  
Mengyuan Hu ◽  
Shahzad Saeed ◽  
Hongde Liu ◽  
...  

Numerous studies have indicated that intrinsic defects in lithium niobate (LN) dominate its physical properties. In an Nb-rich environment, the structure that consists of a niobium anti-site with four lithium vacancies is considered the most stable structure. Based on the density functional theory (DFT), the specific configuration of the four lithium vacancies of LN were explored. The results indicated the most stable structure consisted of two lithium vacancies as the first neighbors and the other two as the second nearest neighbors of Nb anti-site in pure LN, and a similar stable structure was found in the doped LN. We found that the defects dipole moment has no direct contribution to the crystal polarization. Spontaneous polarization is more likely due to the lattice distortion of the crystal. This was verified in the defects structure of Mg2+, Sc3+, and Zr4+ doped LN. The conclusion provides a new understanding about the relationship between defect clusters and crystal polarization.


Sign in / Sign up

Export Citation Format

Share Document