Microstructure and mechanical properties of high strength TMCP steel hybrid disk laser-MAG welded joint

2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040063
Author(s):  
Zheng Lei ◽  
Zongtao Zhu ◽  
Xiaoyi Yang ◽  
Yishuai Jiang ◽  
Hui Chen

Hybrid laser-arc welding (HLAW) was carried out on high strength thermo-mechanical controlled process (TMCP) steel of 14 mm thickness using single-pass welding (SPW) and multi-pass welding (MPW) processes. Well-formed weld joints with good performance were successfully obtained. The results showed that the microstructure of weld was pre-eutectoid ferrite, acicular ferrite and some granular bainite. There were mainly lath bainite, granular bainite and acicular ferrite in the heat-affected zone. The grain sizes of SPW were thicker than MPW, and the bainite content of MPW was higher than SPW. The average hardness value of the fusion zone was lower than that of the Heat affected zone, but higher than that of the base material. The weld was divided into upper arc domain zone (ADZ) and lower laser domain zone (LDZ). The ADZ was harder than the LDZ. The average absorbed energy of SPW and MPW in the fusion zone at −40[Formula: see text]C was 125.5 and 92 J/cm2, respectively. The influences of microstructure on impact toughness were summarized by analyzing the hardness distribution and microstructure of the welded joint. The brittle transition temperatures of the two processes obtained by the energy criterion and the morphology criterion were close to each other.

2011 ◽  
Vol 194-196 ◽  
pp. 255-258
Author(s):  
Kun Ning Jia

The coarse grain heat affected zone(CGHAZ) at different parameters t8/5 of high-strength bridge steel Q460q were simulated with thermal simulation machine. the microstructure of CGHAZ and the effect of granular bainite on the toughness were analyzed in this paper.The results show that: When t8/5<60s, lath bainite and granular bainite intertwine, and the quantity of strip M-A constituents in granular bainite decreased, so toughness is higher.When t8/5>60s, the quantity of eutectoid ferrite and granular bainite increased, coarse M-A constituent resulting in the grain size of effective crack propagation becoming coarser and toughness decreased significantly.


2011 ◽  
Vol 284-286 ◽  
pp. 1174-1179 ◽  
Author(s):  
Xue Li Tao ◽  
Kai Ming Wu ◽  
Xiang Liang Wan

The effect of Nb microalloying on microstructure transformation of coarse-grained heat-affected zone of high strength low alloy steels were investigated utilizing different heat input welding simulation. For the low-Nb steel, the microstructures of coarse-grained heat-affected zone mainly consisted of acicular ferrite, bainite and grain boundary ferrite for small heat input welding; the amount of acicular ferrite decreased whereas grain boundary ferrite, polygonal ferrite and pearlite increased with increasing heat input. In constrast, for the high-Nb steel, granular bainite was the dominant microstructure. The formation of granular bainitic microstructure was associated with the solid solution of Nb, which suppressed ferrite transformation and promoted the formation of granular bainite. The hardness of coarse-grained heat-affected zone increased with increasing Nb content, and decreased with decreasing heat input, which was attributed to the microstructural change.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 939 ◽  
Author(s):  
Yun Zong ◽  
Chun-Ming Liu

In order to provide important guidance for controlling and obtaining the optimal microstructures and mechanical properties of a welded joint, the continuous cooling transformation diagram of a new low-carbon Nb-microalloyed bainite E550 steel in a simulated coarse-grain heat-affected zone (CGHAZ) has been constructed by thermal dilatation method in this paper. The welding thermal simulation experiments were conducted on a Gleeble-3800 thermo-mechanical simulator. The corresponding microstructure was observed by a LEICA DM2700M. The Vickers hardness (HV) and the impact toughness at −40 °C were measured according to the ASTM E384 standard and the ASTM E2298 standard, respectively. The experimental results may indicate that the intermediate temperature phase transformation of the whole bainite can occur in a wide range of cooling rates of 2–20 °C/s. In the scope of cooling rates 2–20 °C/s, the microstructure of the heat-affected zone (HAZ) mainly consists of lath bainite and granular bainite. Moreover, the proportion of lath bainite increased and granular bainite decreased as the cooling rate increasing. There is a spot of lath martensite in the microstructure of HAZ when the cooling rate is above 20 °C/s. The Vickers hardness increases gradually with the increasing of the cooling rate, and the maximum hardness is 323 HV10. When the cooling time from 800 °C to 500 °C (t8/5) is 5–15 s, it presents excellent −40 °C impact toughness (273–286 J) of the CGHAZ beyond the base material (163 J).


Metallurgist ◽  
2021 ◽  
Vol 64 (9-10) ◽  
pp. 875-884
Author(s):  
K. G. Vorkachev ◽  
P. P. Stepanov ◽  
L. I. Éfron ◽  
M. M. Kantor ◽  
A. V. Chastukhin ◽  
...  

2022 ◽  
Vol 905 ◽  
pp. 44-50
Author(s):  
Li Wang ◽  
Ya Ya Zheng ◽  
Shi Hu Hu

The effects of welding wire composition on microstructure and mechanical properties of welded joint in Al-Mg-Si alloy were studied by electrochemical test, X-ray diffraction (XRD) analysis and metallographic analysis. The results show that the weld zone is composed of coarse columnar dendrites and fine equated grains. Recrystallized grains are observed in the fusion zone, and the microstructure in the heat affected zone is coarsened by welding heat. The hardness curve of welded joint is like W-shaped, the highest hardness point appears near the fusion zone, and the lowest hardness point is in the heat affected zone. The main second phases of welded joints are: matrix α-Al, Mg2Si, AlMnSi, elemental Si and SiO2. The addition of rare earth in welding wire can refine the grain in weld zone obviously, produce fine grain strengthening effect, and improve the electrochemical performance of weld.


2021 ◽  
Vol 1027 ◽  
pp. 149-154
Author(s):  
Sen Dong Gu ◽  
Ji Peng Zhao ◽  
Rui Jie Ouyang ◽  
Yong Hong Zhang

In the present study, TA1 titanium alloy sheets with a thickness of 0.8mm were welded by electron beam welding. Microstructure of the welded region was investigated using optical microscope and electron backscattered diffraction. Then, the tensile test was conducted to analyse the tensile behavior of the welded sheets as well as the fractography of the fracture surfaces. It is shown that the mean grain size in the heat-affected zone is smaller than that in the fusion zone and base material. The strength of the base metal is lower than that of the fusion zone and heat-affected zone. The average values of the yield strength, tensile strength and elongation of the tensile specimens are 224MPa, 335MPa and 35%, respectively. In addition, the tensile specimens of the welded sheets suffer both ductile and brittle deformation during the tensile tests.


2020 ◽  
Vol 1157 ◽  
pp. 73-82
Author(s):  
Raghawendra Pratap Singh Sisodia ◽  
Marcell Gáspár ◽  
Béla Fodor ◽  
László Draskóczi

In this paper, heat affected zone characteristics of DP1000 steels was investigated during diode laser beam welding (LBW). A butt-welded joint of specimen in dimension of 300 x 150 mm each (according to EN15614-11:2002) with 1 mm thickness is used for the experimental purpose. The welding thermal cycle and the cooling circumstances in the HAZ was determined by real experiment and the physical simulation. A Gleeble 3500 thermo-physical simulator was used to physically simulate the coarse grain heat affected zone (CGHAZ) on the base material specimens by the utilization of the thermal cycles for t8/5 =2.5 s. The results of the physical simulation were validated by real welding experiments. The properties of the simulated and the real HAZ was examined by optical microscopic, scanning electron microscope and hardness tests.


2011 ◽  
Vol 399-401 ◽  
pp. 139-143
Author(s):  
Dian Xiu Xia ◽  
De Liang Meng ◽  
Shou Yong An ◽  
Yong Lin Kang

In the present study, X80 and X100 grade high deformability pipeline steels have been processed by using TMCP and followed two-stage cooling process. The microstructures of the X80HD (HD, high deformability) and X100HD steels were both characterized by ferrite-bainite dual phase. The grains sizes of ferrite were mostly less than 5μm and the volume fractions were about 20~25% in X80HD and 10~15% in X100HD steel. The bainite structure in X80HD steel was granular bainite (GB); while in X100HD steel large amounts of lath bainite (LB) were also formed besides GB, and bainite grains were much finer. Ferrite-bainite dual phase microstructure has large strain hardenability that resulting high strength and high deformability combination. Both the steels exhibit high strength/toughness in transverse direction and high deformability in longitudinal direction. The X100HD steel with more volume of LB and less volume of PF has higher strength but lower deformability than that of X80HD steel.


Sign in / Sign up

Export Citation Format

Share Document