First-principles study of the vacancy and layer defects in Ti3SiC2

2020 ◽  
Vol 34 (20) ◽  
pp. 2050198
Author(s):  
Jian-Rong Zhang ◽  
Wei-Ming Liu ◽  
Li-Dong Ma ◽  
Qion Yang ◽  
Yan-Wei Chen ◽  
...  

First-principles calculations are performed to study the effects of defect on the structure and electronic properties of Ti3SiC2. The calculations show that the formation energy of Si vacancy is minimal compared with the Ti or C vacancies in Ti3SiC2. The defects of Si layer also can be formed under high-temperature or irradiation environments. The C-layers or Ti-layers are almost impossible to form. If the Si vacancy or Si layers are formed, they prefer to be substituted by the O and H atoms to form the MXene structure, and the unit cell of Ti3SiC2 lattice constant decreases in c-direction. However, it has quite slight effect on electronic properties of Ti3SiC2. The He impurities are almost impossible to occupy the Si vacancies, because the formation energy are 50.860 eV for one layer of Si atoms substituted by the He atoms. This type of defect leads to the lattice constant of Ti3SiC2 in c-direction increasing considerably. Therefore, Ti3SiC2 is a suitable candidate for nuclear materials because of the high-formation energies of He impurities under irradiation environment.

2020 ◽  
Vol 10 (6) ◽  
pp. 2097
Author(s):  
Mi-An Xue ◽  
Xiaoli Yuan ◽  
Cheng Zhong ◽  
Peng Wan

Co2Zr and Co2Ti are both cubic crystals with a Cu2Mg-type structure. The elastic, thermodynamic and electronic properties of the intermetallic compounds Co2Zr and Co2Ti are investigated by using ab initio plane-wave pseudopotential density functional theory (PWPDFT) and generalized gradient approximation (GGA) under high temperature and pressure. The partially calculated results are consistent with the available experimental data. The elastic properties of Co2Zr and Co2Ti under high pressure were first studied by first principles calculations. The results indicate that the elastic constants, elastic modulus and Poisson’s ratio are functions of pressure, indicating that the effect of pressure on the ductility and anisotropy is significant. The thermodynamic properties are also calculated by the quasi-harmonic Debye model. In the range of 0~100 GPa pressure and 0~1500 K temperature, the Debye temperature Θ, the heat capacity CV and the thermal expansion α vary with pressure and temperature. Co2Ti has a higher Debye temperature than Co2Zr under the same pressure. Decreasing temperature and increasing pressure have the same effects on CV and α. The electron density difference and density of states of Co2Zr and Co2Ti are finally investigated. The results show that both Co2Zr and Co2Ti are typically metal crystals but Co2Zr has greater covalence than Co2Ti.


2011 ◽  
Vol 1331 ◽  
Author(s):  
Ka Xiong ◽  
Weichao Wang ◽  
Roberto Longo Pazos ◽  
Kyeongjae Cho

ABSTRACTWe investigate the electronic structure of interstitial Li and Li vacancy in Li7P3S11 by first principles calculations. We find that Li7P3S11 is a good insulator with a wide band gap of 3.5 eV. We find that the Li vacancy and interstitial Li+ ion do not introduce states in the band gap hence they do not deteriorate the electronic properties of Li7P3S11. The calculated formation energies of Li vacancies are much larger than those of Li interstitials, indicating that the ion conductivity may arise from the migration of interstitial Li.


1994 ◽  
Vol 364 ◽  
Author(s):  
Michael J. Mehl

AbstractThe discovery of ductile cubic phases in the Nb-Ti-Al system has led to increased study of these high-temperature intermetallics. I have performed first-principles calculations for ordered crystal structures in this system, paying particular attention to the Nb7Ti7Al2 structure. Somewhat surprisingly, the electronic density of states, lattice constant, and bulk modulus are nearly independent of the ordering of these materials, even though the changes in the total energy are significant.


2012 ◽  
Vol 11 (06) ◽  
pp. 1261-1280 ◽  
Author(s):  
HUANWEN WU ◽  
NING ZHANG ◽  
HONGMING WANG ◽  
SANGUO HONG

Geometric and electronic properties and vacancy formation energies for two kinds of oxygen-vacancy Cu 2 O (111) surfaces have been investigated by first-principles calculations. Results show that the relaxation happens mainly on the top three trilayers of surfaces. Two vacancies trap electrons of -0.11e and -0.27e, respectively. The effects of oxygen vacancies on the electronic structures are found rather localized. The electronic structures suggest that the oxygen vacancies enhance the electron donating ability of the surfaces to some extent. The energies of 1.75 and 1.43 eV for the formation of oxygen vacancies are rather low, which indicates the partially reduced surfaces are stable and easy to produce.


2019 ◽  
Vol 33 (01) ◽  
pp. 1850423
Author(s):  
Hui Chen ◽  
Mu Gu

First-principles calculations have been performed to investigate the doping defects in CuI with group-IIB elements such as Zn, Cd and Hg. The calculated transition energies for substitutional Zn, Cd and Hg are 1.32, 1.28 and 0.60 eV, respectively. These group-IIB elements at the substitutional sites complex with a copper vacancy [Formula: see text] have the lower formation energies as compared to dopants located at the substitutional sites or interstitial sites, respectively. Among all the complex defects considered, [Formula: see text] has the lowest formation energy and it induces the acceptor level [Formula: see text] eV above the valence-band maximum (VBM), which is close to the acceptor level [Formula: see text] eV of [Formula: see text], suggesting that Hg may be a good dopant for CuI to improve its p-type conductivity.


2019 ◽  
Vol 33 (18) ◽  
pp. 1950209
Author(s):  
Jitao Liu ◽  
Zhaocang Meng ◽  
Jiajia Liu ◽  
Xiaolu Zhu ◽  
Canglong Wang ◽  
...  

The formation energies and formation volumes of the Ta, Al, and C vacancies in Ta2AlC have been calculated by using first-principles method. The results have shown that the vacancy formation is energetically most favorable for the C atom with formation energy of 1.72 eV. The formation energies of Ta and Al vacancies are 3.44 eV and 3.52 eV, respectively. The electronics properties show that the Ta vacancy has a clear effect on the conductivity of the Ta2AlC. This result indicates that Ta2AlC is a good candidate material for high-temperature and nuclear applications.


Sign in / Sign up

Export Citation Format

Share Document