LOW TEMPERATURE SPECIFIC HEAT OF (KBr)1-x(KCN)x MIXED CRYSTAL

2003 ◽  
Vol 17 (26) ◽  
pp. 1391-1398 ◽  
Author(s):  
N. K. GAUR ◽  
NUPINDER KAUR ◽  
MANIK MANAKE ◽  
JYOTSNA GALGALE ◽  
R. K. SINGH

We have investigated the cohesive and thermodynamic properties of ( KBr )1-x( KCN )x using an extended three-body force shell model (ETSM), which has been found to be adequately suitable for the description of orientationally disordered mixed cyanide-halide crystals. The specific heat of ( KBr )1-x( KCN )x for compositions (x=0.53, 0.65, 0.73, 0.84 and 0.93) at temperature 10 K ≤T≤150 K have been computed using the ETSM for the first time. The paper also reports the calculated results on Debye temperature (Θ D ), cohesive energy (Φ), compressibility (β), molecular force constant (f) and Restrahlen frequency (ν0) of ( KBr )1-x( KCN )x. The results on specific heat and some other thermal properties are in good agreement with their available experimental data.

2007 ◽  
Vol 21 (14) ◽  
pp. 885-891 ◽  
Author(s):  
NUPINDER KAUR ◽  
N. K. GAUR ◽  
R. K. SINGH

We have applied the Rigid Ion Model (RIM) to study the cohesive and thermal properties of binary intermetallic BeB 2 and TiB 2. The paper reports the calculated results on cohesive energy (ϕ), compressibility (β), molecular force constant (f), Restrahalen frequency (ν0), Debye temperature (Θ D ) and Gruneisen parameter (γ) for the temperature range 50 K ≤ T ≤ 300 K and the effect of van der Waal interaction on these properties are also shown. Our results on Debye temperature are closer to the experimental data. In addition, we have computed the specific heats for BeB 2 and TiB 2 and compared them with the available experimental data.


2013 ◽  
Vol 27 (17) ◽  
pp. 1350054 ◽  
Author(s):  
RASNA THAKUR ◽  
RAJESH K. THAKUR ◽  
N. K. GAUR

We have investigated the elastic and thermal properties of Sr 1-x Ca x RuO 3(0≤x ≤1) perovskite using a modified rigid ion model (MRIM). The trend of variation of our computed specific heat in the temperature range 1 K ≤ T ≤ 1000 K are in good agreement with corresponding experimental data for almost all the compositions (x). The specific heat found to increase with temperature from 1 K to 300 K, while they decrease with concentration (x) for these perovskite ruthenates. Besides, we have reported the thermal properties, like thermal expansion (α), molecular force constant (f), Reststrahlen frequency (υ), cohesive energy (ϕ), Debye temperature (θD) and Gruneisen parameter (γ).


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Rasna Thakur ◽  
N. K. Gaur

We have investigated the bulk modulus and thermal properties of La1-xSmxCoO3 (0≤x≤0.2) at temperatures 1 K≤T≤300 K probably for the first time by incorporating the effect of lattice distortions using the modified rigid ion model (MRIM). The calculated specific heat, thermal expansion, bulk modulus, and other thermal properties reproduce well with the available experimental data, implying that MRIM represents properly the nature of the pure and doped cobaltate. The specific heats are found to increase with temperature and decrease with concentration (x) for the present. The increase in Debye temperature (θD) indicates an anomalous softening of the lattice specific heat because increase in T3-term in the specific heat occurs with the decrease of concentration (x).


2004 ◽  
Vol 19 (12) ◽  
pp. 3607-3613 ◽  
Author(s):  
H. Iikawa ◽  
M. Nakao ◽  
K. Izumi

Separation by implemented oxygen (SIMOX)(111) substrates have been formed by oxygen-ion (16O+) implantation into Si(111), showing that a so-called “dose-window” at 16O+-implantation into Si differs from Si(100) to Si(111). In SIMOX(100), an oxygen dose of 4 × 1017/cm2 into Si(100) is widely recognized as the dose-window when the acceleration energy is 180 keV. For the first time, our work shows that an oxygen dose of 5 × 1017/cm2 into Si(111) is the dose-window for the formation of SIMOX(111) substrates when the acceleration energy is 180 keV. The difference between dose-windows is caused by anisotropy of the crystal orientation during growth of the faceted buried SiO2. We also numerically analyzed the data at different oxidation velocities for each facet of the polyhedral SiO2 islands. Numerical analysis results show good agreement with the experimental data.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1205-1208 ◽  
Author(s):  
A. F. BAKUZIS ◽  
KEZHENG CHEN ◽  
WEILI LUO ◽  
HONGZHANG ZHUANG

We have studied magnetic force on sperical magnetic fluid samples with a wide range of concentrations by pendulum method. The results demonstrate good agreement with Kelvin body force and show that other force expressions clearly deviate from experimental data for large sussceptibility values.


2019 ◽  
Vol 34 (06) ◽  
pp. 1950043
Author(s):  
Mahboobeh Sayahi

In this paper, the non-leptonic three-body decays [Formula: see text], [Formula: see text], [Formula: see text] are studied by introducing two-meson distribution amplitude for the [Formula: see text], [Formula: see text] and [Formula: see text] pairs in naive and QCD factorization (QCDF) approaches, such that the analysis is simplified into quasi-two body decays. By considering that the vector meson is being ejected in factorization, the resonant and non-resonant contributions are analyzed by using intermediate mesons in Breit–Wigner resonance formalism and the heavy meson chiral perturbation theory (HMChPT), respectively. The calculated values of the resonant and non-resonant branching ratio of [Formula: see text], [Formula: see text] and [Formula: see text] decay modes are compared with the experimental data. For [Formula: see text] and [Formula: see text], the non-resonant contributions are about 70–80% of experimental data, for which the total results by considering resonant contributions are in good agreement with the experiment.


2001 ◽  
Vol 677 ◽  
Author(s):  
A. Khitun ◽  
J.L. Liu ◽  
K.L. Wang ◽  
G. Chen

ABSTRACTWe present a theoretical model in order to describe both thermal and electronic in-plane transports in quantum dot superlattice. The model takes into account the modifications of electron and phonon transport due to the space confinement caused by the mismatch in electronic and thermal properties between dot and host materials. The developed model provides the analysis of the in-plane superlattice electronic and thermal properties versus quantum dot size and their arrangement. Numerical calculations were carried out for a structure that consists of multiple layers of Si with regimented germanium quantum dots. The simulation results of the lattice thermal conductivity are in a good agreement with experimental data.


Author(s):  
Guillaume Dufour ◽  
William Thollet

The windmilling regime of a turbofan corresponds to a freewheeling mode of the fan rotor, driven by the ram pressure at the inlet. Early in the design process, determination of the windmilling rotational speed of the fan can be critical in the design of the supporting structure of the engine. Therefore, prediction of key parameters in windmilling is an important part of engine design. In particular, given the very high bypass ratio obtained at windmill (typically around 50), the flow in the fan stage and bypass duct is of prime interest, as it drives the establishment of the rotational speed of the low pressure spool and the overall drag. Classical CFD simulations have been shown to provide an adequate representation of the flow, but extensive parametric studies can be needed, which underlines the need for reduced-cost modeling of the flow in the engine. In this context, a body force modeling (BFM) approach to windmilling simulations is examined in the present contribution. The main objective is to assess the capability of the BFM approach to reproduce the aerodynamics of the flow in the fan rotor of a turbofan at windmill, and to propose a method to predict the rotational speed of the fan. The test case considered is a high-bypass ratio geared turbofan (the DGEN 380), which has been tested in an experimental facility designed to reproduce ground level windmilling conditions. The available global and local experimental data are used to validate the model. Furthermore, classical RANS simulations are also provided as reference simulations to assess the accuracy of the BFM results. It is found that the overall performance of the fan is well predicted by the BFM simulations, in particular at the low rotational regime associated to windmilling. In terms of local validation, radial profiles are also found to be in good agreement, except close to the shroud. Analysis of the CFD results shows this can be traced back to massive flow separation in the rotor tip area. In terms of cost, a BFM simulation is about 80 times faster than the baseline CFD computation, making this approach very efficient in term of accuracy-to-cost ratio. Finally, assuming zero-work exchange across the rotor, a transient equation for the rotational speed is derived and included in the time-marching process to the steady state. As a result, the rotational speed of the fan becomes an output of the simulations. The rotational speed predicted by the present model shows good agreement with engine experimental data. However, as only the rotor is modeled, the internal losses are not fully accounted for, and the massflow has to be specified from the experimental data. Further improvement of the approach will consist in modeling the stator and the complete secondary duct so that the loss, and therefore the massflow, can be predicted.


2012 ◽  
Vol 26 (31) ◽  
pp. 1250190
Author(s):  
ATAHAR PARVEEN ◽  
N. K. GAUR

We have investigated the elastic, cohesive and thermal properties of (Lu, Sc) VO 3 and Sc 1-x Lu x VO 3(0.6 ≤ x ≤ 0.9) perovskites by means of a modified rigid ion model (MRIM). The variation of specific heat is determined following the temperature driven structural phase transitions. Also, the effect of lattice distortions on the elastic and thermal properties of the present pure and doped vanadates has been studied by an atomistic approach. The calculated bulk modulus (BT), reststrahlen frequency (ν0), cohesive energy (ϕ), Debye temperature (θD) and Gruneisen parameter (γ) reproduce well with the corresponding experimental data. The specific heat results can further be improved by including the magnetic ordering contributions to the specific heat.


Author(s):  
Preeti Singh Bahadur

In this paper we have evaluated the pressure derivatives of third order elastic constants in the CsCN material. An extended three body force shell model (ETSM), which incorporates the effects of translational– rotational (TR) coupling, three body interactions (TBI) and anharmonicity, has been applied. The pressure derivatives of TOECs, dc111/dp, dc112/dp, dc166/dp, dc111/dp dc123/dp and dc456/dp show increasing trend with increasing temperature. However their values could not be compared due to lack of experimental data.


Sign in / Sign up

Export Citation Format

Share Document