STUDY OF THE INHOMOGENEITY OF SCHOTTKY BARRIER HEIGHT IN NICKEL SILICIDE BY THE INTERNAL PHOTOEMISSION SPECTROSCOPY

2006 ◽  
Vol 20 (28) ◽  
pp. 1825-1832
Author(s):  
SHIHUA HUANG ◽  
FENGMIN WU

The inhomogeneity of Schottky barrier height (SBH) in nickel silicide/ Si contacts was observed by the internal photoemission spectroscopy. New Fowler equations were introduced to analyze the observed properties. We assumed that two or three regions with different SBHs coexist in Ni silicide/ Si contacts, and then the individual barrier height was evaluated. We found that SBH increases monotonously with the increase of annealing temperature in the case of T annealing <600° C . When T annealing is 600°C, SBH becomes maximal, then decreases monotonously with the increase of annealing temperature in the case of T annealing > 600° C . The formation of the two regions (Regions II and III) in nickel silicide/ Si Schottky contacts annealed at different temperatures, was explained by the model of the Fermi-level pinning or the metal-induced gap states.

2009 ◽  
Vol 1155 ◽  
Author(s):  
Yen-Chu Yang ◽  
Yoshifumi Nishi ◽  
Atsuhiro Kinoshita

AbstractParasitic resistance, particularly source/drain contact resistance becomes one of the most serious problems to extend MOSFET scaling recently. Nickel silicide (NiSi), with advantages of low resistivity and high scalability, has been chosen as the material for source/drain formation. However, its Schottky barrier height (SBH) of 0.65eV for electrons is so high that it would block electrons from tunneling, therefore becomes an obstacle to further reduce the contact resistance, which is necessary to achieve the future scaling. Among several solutions, high concentration impurity-segregation layers have been introduced at NiSi/Si interfaces to reduce SBH of MS-MOSFETs. Sulfur (S) has been considered to be an efficient material for the segregation-layer to reduce SBH owing to Fermi-level pinning effect. Previous studies have investigated segregation by implanting S before NiSi formation. Because of the high diffusivity of S in Si, S profile becomes broad during silicidation process, which leads to loss of S concentration at the interface. Moreover, S ions spread into the substrate and channel region generate deep impurity levels that induce junction leakage and off leakage, resulting in device performance degradation. In this paper, S implantation after Ni silicidation is proposed to suppress S diffusion because NiSi is expected to be an efficient barrier for S diffusion. In addition, NiSi/Si interface can serve as a potential energetic valley which may trap S during thermal treatment after implantation. In this work, S was implanted into NiSi/n-Si diodes at the energy of 10keV with dose of 5�1014 and 1015 cm-3 after NiSi is formed. The projection range of S in NiSi is about 6nm, while thickness of NiSi is 16nm. Some devices were annealed at 300C and 450C. The I-V characteristics show that SBH is sufficiently reduced as the annealing temperature becomes higher, and it reaches as low as 3.4meV for 450C annealing. SBH of 3.4meV is much lower than the previously reported value of 70meV for which S was implanted before silicidation. The SIMS analysis result also proves the S profile is much sharper than having S-implantation before Ni silicidation, which supports our hypothesis that S diffusion is suppressed through our process and avoid the loss of S concentration at the interface. Moreover, despite the worry that S-implantation might damage the NiSi/Si interface morphology, cross sectional TEM images show that the interfacial flatness is completely the same as that of non-implanted NiSi/Si, indicating that no degradation occurs by S implantation. In summary, S-implantation after NiSi formation, which provides ultimately low SBH at NiSi/Si interface, is a promising technique to realize ultra-low parasitic resistance source/drain for future LSI beyond 16nm generation.


2019 ◽  
Vol 9 (23) ◽  
pp. 5014
Author(s):  
Courtin ◽  
Moréac ◽  
Delhaye ◽  
Lépine ◽  
Tricot ◽  
...  

Fermi level pinning at metal/semiconductor interfaces forbids a total control over the Schottky barrier height. 2D materials may be an interesting route to circumvent this problem. As they weakly interact with their substrate through Van der Waals forces, deposition of 2D materials avoids the formation of the large density of state at the semiconductor interface often responsible for Fermi level pinning. Here, we demonstrate the possibility to alleviate Fermi-level pinning and reduce the Schottky barrier height by the association of surface passivation of germanium with the deposition of 2D graphene.


1992 ◽  
Vol 281 ◽  
Author(s):  
A. D. Marwick ◽  
M. O. Aboelfotoh ◽  
R. Casparis

ABSTRACTIt is shown that the presence of 8 × 1015 hydrogen atoms/cm2 in the CoSi2/Si (100) interface causes an increase in the Schottky barrier height of 120 meV, and that passivation of dopants in the substrate is not the cause of this change. The data is evidence that the position of the Fermi level in this interface is controlled by defect-related interface states. After hydrogenation the Schottky barrier height agrees with that predicted by theory for Fermi level pinning by virtual gap states of the silicon.


2010 ◽  
Vol 96 (5) ◽  
pp. 052514 ◽  
Author(s):  
Donkoun Lee ◽  
Shyam Raghunathan ◽  
Robert J. Wilson ◽  
Dmitri E. Nikonov ◽  
Krishna Saraswat ◽  
...  

1998 ◽  
Vol 73 (26) ◽  
pp. 3917-3919 ◽  
Author(s):  
L. S. Yu ◽  
Q. J. Xing ◽  
D. Qiao ◽  
S. S. Lau ◽  
K. S. Boutros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document