STUDIES OF THE ENERGY SPECTRUM AND THE WAVE FUNCTION FOR LOW ENERGY EXCITED STATES IN LIQUID HELIUM II

2007 ◽  
Vol 21 (21) ◽  
pp. 1383-1390
Author(s):  
DE-HUA LIN ◽  
PING ZOU ◽  
ZHONG-WEI ZHANG ◽  
HONG-LEI WANG ◽  
JUN PAN ◽  
...  

In this paper, we study the elementary excitations and energy spectrum proposed by L. D. Landau in liquid helium II. On the basis of the energy spectrum for the phonons and rotons, we put forward a uniform expression of energy spectrum in liquid helium II, which is limited in a specific temperature range. By using the wave function for low energy excited states proposed by R. P. Feynman or the modified one proposed by Feynman and Cohen, it can be found that the estimated energy spectrum is quite different from the experimental data, especially for the region with large wave numbers. By proposing an improved form for the wave function, we re-analyze the energy spectrum in liquid helium II, and our results show a better agreement with the experimental data.

1969 ◽  
Vol 41 (4) ◽  
pp. 919-940 ◽  
Author(s):  
Sigenobu Sunakawa ◽  
Shuichiro Yamasaki ◽  
Takeji Kebukawa

2020 ◽  
Vol 29 (10) ◽  
pp. 2050082
Author(s):  
Y. Omon ◽  
J. M. Ema’a Ema’a ◽  
P. Ele Abiama ◽  
G. H. Ben-Bolie ◽  
P. Owono Ateba

In this paper, Bohr Hamiltonian is used to describe the behaviors of triaxial nuclei with screened Kratzer potential. The Nikivorov–Uvarov method is used to derive the energy spectrum and corresponding wave function. The electric quadruple transition ratios and energy spectrum of the [Formula: see text]Xe, [Formula: see text]Xe, [Formula: see text]Xe, [Formula: see text]Xe, [Formula: see text]Xe, [Formula: see text]Pt, [Formula: see text]Pt and [Formula: see text]Pt are calculated and compared with the experimental data. The results are in good agreement with experiment data.


The Clebsch formula, u = –∇ ϕ – χ ∇ ψ , for the fluid velocity allows the classical hydro-dynamical equations, including vorticity, to be derived from a variational principle, and put into canonical form. The standard quantization procedure of the theory of fields then gives a set of field operators satisfying the commutation relations obtained (starting from different premises) by Landau (1941). The Hamiltonian contains terms corresponding to the excitation of the ‘roton’ states of Landau’s theory, with an energy spectrum (allowing for the atomicity of real liquids by a ‘cut off’ in the Fourier analysis of the field variables) of the form E = ∆ + p 2 /2 μ . The observed variations of specific heat and second-sound velocity in liquid helium II may be interpreted to give values of ∆ in good agreement with the theory, with an apparent variation of μ with p , perhaps attributable to roton-roton and phonon-roton interactions.


2010 ◽  
Vol 19 (02) ◽  
pp. 225-242 ◽  
Author(s):  
V. F. KHARCHENKO ◽  
A. V. KHARCHENKO

A rigorous formalism for determining the electric dipole polarizability of a three-hadron bound complex in the case that the system has only one bound (ground) state has been elaborated. On its basis, by applying a model wave function that takes into account specific features of the structure of the three-body nuclei and using the known low-energy experimental data for the p–n, n–d, and Λ–d systems as input data, we have calculated the values of the electric dipole polarizabilities of the triton αE(3 H ) and lambda hypertriton [Formula: see text]. We have obtained for the triton polarizability the value 0.23 fm3. It follows from our study that the polarizability of the lambda hypertriton is close to 3 fm3 exceeding the polarizabilities of the ordinary three-nucleon nuclei by an order of magnitude.


Physica B+C ◽  
1980 ◽  
Vol 100 (1) ◽  
pp. 74-80 ◽  
Author(s):  
A. Isihara ◽  
Soon-Tahk Choh ◽  
Woo-Hyung Kang ◽  
Chung-In Um

2012 ◽  
Vol 21 (11) ◽  
pp. 1250089 ◽  
Author(s):  
M. FILIPOWICZ ◽  
V. M. BYSTRITSKY ◽  
G. N. DUDKIN ◽  
F. M. PENK'OV ◽  
A. V. PHILIPPOV

This paper presents results of the application Monte Carlo method to analyze data from the interaction of deuteron beams with metallic targets saturated with deuterium. The SRIM software was used to generate energy spectrum of ions passing the target. These spectra were used to calculate the neutron yields from dd reactions in energy range 7–12 keV of incident deuteron beams. The calculated outputs were compared with the experimental data for the determination of the electron screening potential for dd reactions. The calculations were performed using two different values of the beam energy spread (FWHM) equal 1% and 16%. It was shown that plasma beams with a relatively high spread (16%) were almost as good a tool as the traditional accelerator with mono-energy beam related to the study of the reaction within an ultra-low energy region.


2018 ◽  
Vol 177 ◽  
pp. 03004
Author(s):  
M. Stepanov ◽  
L. Imasheva ◽  
B. Ishkhanov ◽  
T. Tretyakova

Excited states in low-energy spectra in nuclei near 208Pb are considered. The pure (j = 9/2)n configuration approximation with delta-force is used for ground state multiplet calculations. The multiplet splitting is determined by the pairing energy, which can be defined from the even-odd straggering of the nuclear masses. For the configurations with more than two valence nucleons, the seniority scheme is used. The results of the calculations agree with the experimental data for both stable and exotic nuclei within 0.06-6.16%. Due to simplicity and absence of the fitted parameters, the model can be easily applied for studies of nature of the excited states in a wide range of nuclei.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 145
Author(s):  
Nikolay N. Arsenyev ◽  
Alexey P. Severyukhin

Beginning with the Skyrme interaction, we study the properties of the isoscalar giant monopole resonances (ISGMR) of 132Sn. Using the finite-rank separable approximation for the particle-hole interaction, the coupling between one- and two-phonon terms in the wave functions of excited states is taken into account in very large configurational spaces. The inclusion of the phonon–phonon coupling (PPC) results in the formation of a low-energy 0+ state. The PPC inclusion leads to a fragmentation of the ISGMR strength to lower energy states and also to a higher energy tail. Using the same set of parameters, we describe the available experimental data for the ISGMR characteristics of 118,120,122,124Sn and give a prediction for 126,128,130,132Sn.


Sign in / Sign up

Export Citation Format

Share Document