ELECTRIC DIPOLE POLARIZABILITIES OF THE TRITON AND LAMBDA HYPERTRITON

2010 ◽  
Vol 19 (02) ◽  
pp. 225-242 ◽  
Author(s):  
V. F. KHARCHENKO ◽  
A. V. KHARCHENKO

A rigorous formalism for determining the electric dipole polarizability of a three-hadron bound complex in the case that the system has only one bound (ground) state has been elaborated. On its basis, by applying a model wave function that takes into account specific features of the structure of the three-body nuclei and using the known low-energy experimental data for the p–n, n–d, and Λ–d systems as input data, we have calculated the values of the electric dipole polarizabilities of the triton αE(3 H ) and lambda hypertriton [Formula: see text]. We have obtained for the triton polarizability the value 0.23 fm3. It follows from our study that the polarizability of the lambda hypertriton is close to 3 fm3 exceeding the polarizabilities of the ordinary three-nucleon nuclei by an order of magnitude.

2019 ◽  
Vol 28 (10) ◽  
pp. 1950087 ◽  
Author(s):  
S. M. Moosavi Nejad ◽  
A. Armat

Performing a fit procedure on the hyperon masses, we first determine the free parameters in the Cornell-like hypercentral potential between the constituent quarks of hyperons in their ground state. To this end, using the variational principle, we apply the hyperspherical Hamiltonian including the Cornell-like hypercentral potential and the perturbation potentials due to the spin–spin, spin–isospin and isospin–isospin interactions between constituent quarks. In the following, we compute the hyperon magnetic moments as well as radiative decay widths of spin-3/2 hyperons using the spin-flavor wave function of hyperons. Our analysis shows acceptable consistencies between theoretical results and available experimental data. This leads to reliable wave functions for hyperons at their ground state.


2007 ◽  
Vol 21 (21) ◽  
pp. 1383-1390
Author(s):  
DE-HUA LIN ◽  
PING ZOU ◽  
ZHONG-WEI ZHANG ◽  
HONG-LEI WANG ◽  
JUN PAN ◽  
...  

In this paper, we study the elementary excitations and energy spectrum proposed by L. D. Landau in liquid helium II. On the basis of the energy spectrum for the phonons and rotons, we put forward a uniform expression of energy spectrum in liquid helium II, which is limited in a specific temperature range. By using the wave function for low energy excited states proposed by R. P. Feynman or the modified one proposed by Feynman and Cohen, it can be found that the estimated energy spectrum is quite different from the experimental data, especially for the region with large wave numbers. By proposing an improved form for the wave function, we re-analyze the energy spectrum in liquid helium II, and our results show a better agreement with the experimental data.


2018 ◽  
Vol 96 (10) ◽  
pp. 1104-1115 ◽  
Author(s):  
R.L.M. Melono ◽  
D. Dobgima ◽  
O. Motapon

The energy levels, ground state binding energies, and electric dipole polarizabilities of hydrogenic impurities in quantum dots and quantum nanowires have been investigated using a non-relativistic B-spline based variational method. Firstly, we have worked on the characterization of those impurities (donor/electron) in quantum dots and quantum nanowires, considering the two cases where the impurity is centered or off-centered in the nanostructure. Secondly, the electric dipole polarizabilities have been computed and their sensitivity with confinement parameters investigated. So the energies, binding energies, and dipole polarizabilities were reported for the centered and the off-centered donor and electron impurities as a function of the cavity radius and the off-center displacement. We found that the polarization of the studied system greatly depends on the model potential form, the off-center displacement, and the cavity radius. In the case of quantum dots and for the parabolic potential, the convergence of the polarizability for large values of the quantum size is shown. For the quantum nanowire case, we have shown that the polarizability is greater in the case of the z axis displacement than that of the transversal one. This leads to the fact that the system is more polarizable when the impurity is moved along the z axis than the transversal one.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 71
Author(s):  
Esra Yüksel ◽  
Tomohiro Oishi ◽  
Nils Paar

Nuclear equation of state is often described in the framework of energy density functional. However, the isovector channel in most functionals has been poorly constrained, mainly due to rather limited available experimental data to probe it. Only recently, the relativistic nuclear energy density functional with an effective point-coupling interaction was constrained by supplementing the ground-state properties of nuclei with the experimental data on dipole polarizability and isoscalar monopole resonance energy in 208Pb, resulting in DD-PCX parameterization. In this work, we pursue a complementary approach by introducing a family of 8 relativistic point-coupling functionals that reproduce the same nuclear ground-state properties, including binding energies and charge radii, but in addition have a constrained value of symmetry energy at saturation density in the range J = 29, 30, …, 36 MeV. In the next step, this family of functionals is employed in studies of excitation properties such as dipole polarizability and magnetic dipole transitions, and the respective experimental data are used to validate the optimal choice of functional as well as to assess reliable values of the symmetry energy and slope of the symmetry energy at saturation.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Nasrin Salehi

The spectrum of ground state and excited baryons (N, Δ, Λ, Σ,Ξ, and Ω particles) has been investigated by using nonrelativistic quantum mechanics under the Killingbeck plus isotonic oscillator potentials. Using the Jacobi coordinates, anzast method, and generalized Gürsey Radicati (GR) mass formula the three-body-wave equation is solved to calculate the different states of the considered baryons. A comparison between our calculations and the available experimental data shows that the position of the Roper resonances of the nucleon, the ground states, and the excited multiplets up to three GeV are in general well reproduced. Also one can conclude that the interaction between the quark constituents of baryon resonances could be described adequately by using the combination of Killingbeck and isotonic oscillator potentials form.


2018 ◽  
Vol 177 ◽  
pp. 03004
Author(s):  
M. Stepanov ◽  
L. Imasheva ◽  
B. Ishkhanov ◽  
T. Tretyakova

Excited states in low-energy spectra in nuclei near 208Pb are considered. The pure (j = 9/2)n configuration approximation with delta-force is used for ground state multiplet calculations. The multiplet splitting is determined by the pairing energy, which can be defined from the even-odd straggering of the nuclear masses. For the configurations with more than two valence nucleons, the seniority scheme is used. The results of the calculations agree with the experimental data for both stable and exotic nuclei within 0.06-6.16%. Due to simplicity and absence of the fitted parameters, the model can be easily applied for studies of nature of the excited states in a wide range of nuclei.


2001 ◽  
Vol 10 (02) ◽  
pp. 107-127 ◽  
Author(s):  
MD. ABDUL KHAN ◽  
TAPAN KUMAR DAS ◽  
BARNALI CHAKRABARTI

Hyperspherical harmonics expansion (HHE) method has been applied to study the structure and ΛΛ dynamics for the ground and first excited states of low and medium mass double-Λ hypernuclei in the framework of core+Λ+Λ three-body model. The ΛΛ potential is chosen phenomenologically while core-Λ potential is obtained by folding the phenomenological Λ N interaction into the density distribution of the core. The parameters of this effective Λ N potential is obtained by the condition that they reproduce the experimental (or empirical) data for core-Λ subsystem. The three-body (core+Λ+Λ) Schrödinger equation is solved by hyperspherical adiabatic approximation (HAA) to get the ground state energy and wave function. This ground state energy and wave function are used to construct a partner potential. The three-body Schrödinger equation is solved once again for this partner potential. According to supersymmetric quantum mechanics, the ground state energy of this potential is exactly the same as that of the first excited state of the potential used in the first step. In addition to the two-Λ separation energy for the ground and first excited state, some geometrical quantities for the ground state of double-Λ hypernuclei [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] are computed. These include the ΛΛ bond energy and various r.m.s. radii.


2009 ◽  
Vol 24 (11n13) ◽  
pp. 998-1004
Author(s):  
LAURO TOMIO ◽  
M. T. YAMASHITA ◽  
T. FREDERICO

The universal character of non-relativistic large three-body bosonic systems is addressed, with focus on highly interesting situations that occur in low-energy nuclear and atomic physics. Investigations on the trajectory of the first excited Efimov state, in a renormalized zero-range three-body model for a system with two bound and one virtual two-body subsystems, are reported. The approach is applied to n-n-18C, where the n - n virtual energy and the three-body ground state are kept fixed. It is shown that the real part of the elastic s-wave phase-shift ([Formula: see text]) presents a zero, or a pole in [Formula: see text], when the system has an Efimov excited or virtual state. A brief discussion is given on the relevance of the approach for ultracold atom physics with tunable scattering lengths.


1979 ◽  
Vol 34 (3) ◽  
pp. 353-361
Author(s):  
G. Amoretti ◽  
V. Varacca ◽  
A. Vera

Abstract A model of superexchange, which takes into account the contributions of the polar states, is applied to the case of CuCl2 · 2 NC5H5. As pointed out in a preceding paper, the experimental exchange constant Jeff can be fitted in a reasonable range of parameters of the ground state wave function, which, on the other hand, is tested by means of ESR experimental data. The results are compared with those obtained for CuCl2 · 2 H2O and the approximations introduced are discussed and justified.


Sign in / Sign up

Export Citation Format

Share Document