scholarly journals Origin of Low- and High-Energy Monopole Collectivity in 132Sn

Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 145
Author(s):  
Nikolay N. Arsenyev ◽  
Alexey P. Severyukhin

Beginning with the Skyrme interaction, we study the properties of the isoscalar giant monopole resonances (ISGMR) of 132Sn. Using the finite-rank separable approximation for the particle-hole interaction, the coupling between one- and two-phonon terms in the wave functions of excited states is taken into account in very large configurational spaces. The inclusion of the phonon–phonon coupling (PPC) results in the formation of a low-energy 0+ state. The PPC inclusion leads to a fragmentation of the ISGMR strength to lower energy states and also to a higher energy tail. Using the same set of parameters, we describe the available experimental data for the ISGMR characteristics of 118,120,122,124Sn and give a prediction for 126,128,130,132Sn.

2007 ◽  
Vol 21 (21) ◽  
pp. 1383-1390
Author(s):  
DE-HUA LIN ◽  
PING ZOU ◽  
ZHONG-WEI ZHANG ◽  
HONG-LEI WANG ◽  
JUN PAN ◽  
...  

In this paper, we study the elementary excitations and energy spectrum proposed by L. D. Landau in liquid helium II. On the basis of the energy spectrum for the phonons and rotons, we put forward a uniform expression of energy spectrum in liquid helium II, which is limited in a specific temperature range. By using the wave function for low energy excited states proposed by R. P. Feynman or the modified one proposed by Feynman and Cohen, it can be found that the estimated energy spectrum is quite different from the experimental data, especially for the region with large wave numbers. By proposing an improved form for the wave function, we re-analyze the energy spectrum in liquid helium II, and our results show a better agreement with the experimental data.


2021 ◽  
Author(s):  
Aditya Japa ◽  
Subhendu K. Sahoo ◽  
Ramesh Vaddi ◽  
Manoj Kumar Majumder

Abstract Present CMOS technology with scaled channel lengths exhibited higher energy consumption in designing secure electronic circuits against hardware vulnerabilities and breaches. Specifically, CMOS sense amplifier based secure differential power analysis (DPA) countermeasures at scaled channel lengths show large energy consumption with increased vulnerability. Additionally, spin transfer torque magnetic tunnel junction (STT-MTJ) and CMOS based logic-in-memory (LiM) cells demonstrate high energy consumption due to the large write current requirement of STT-MTJ and poor MOS device performance at scaled channel lengths. This paper for the first time leverages emerging tunnel FET (TFET) steep-slope device characteristics and compatible non-volatile STT-MTJ devices for enhanced hardware security with ultra-low energy consumption at lower supply voltages. TFET based sense amplifier based logic (SABL) gates have been proposed that achieve 3× lower energy consumption compared to Si FinFET SABL designs. Further, utilizing TFET SABL gates, TFET Pride S-box is designed that exhibits higher DPA resilience with 3.2× lower energy consumption compared to FinFET designs. With resulted lower static power consumption, TFET SABL based crypto systems can show lower vulnerability to static power side-channel attacks. Besides, proposed STT-MTJ and TFET LiM gates achieves 4× lower energy consumption compared to STT-MTJ and FinFET designs. Moreover, these gates have been explored in logic encryption/locking technique that shows 3.1× lower energy consumption compared to STT-MTJ and FinFET based design.


2003 ◽  
Vol 18 (08) ◽  
pp. 1391-1395 ◽  
Author(s):  
A. I. SIGNAL

Model calculations of parton distributions are an important way to connect our knowledge of physics at high energy scales with physics at lower energy scales typical of nuclear physics. Earlier work on the spin-independent valence quark distributions has shown that DIS data support a bag radius around 0.8 fm, and highlighted the importance of chiral symmetry and the role of the pion cloud in nucleon structure. Here, that work is extended to the spin-dependent parton distributions. We calculate these distributions in the model and compare with experimental data.


1992 ◽  
Vol 270 ◽  
Author(s):  
Kosmas Prassides ◽  
Christos Christides ◽  
John Tomkinson ◽  
Matthew J. Rosseinsky ◽  
D. W. Murphy ◽  
...  

ABSTRACTThe phonon spectra of pristine fullerene, superconducting K3C60 and saturation-doped Rb6C60 measured by inelastic neutron scatteringin the energy range 2.5 - 200 meV at low temperatures reveal substantial broadening of five-fold degenerate Hg intramolecular vibrational modes both in the low-energy radial and the high-energy tangential part of the spectrum. This provides strong evidence for a traditional phonon-mediated mechanism of superconductivity in the fullerides but with an electron-phonon coupling strength distributed over a wide range of energies (33-195 meV) as a result of the finite curvature of the fullerene spherical cage.


2002 ◽  
Vol 09 (02) ◽  
pp. 1103-1108 ◽  
Author(s):  
L.-C. DUDA ◽  
T. SCHMITT ◽  
J. NORDGREN ◽  
G. DHALENNE ◽  
A. REVCOLEVSCHI

We have performed high-resolution inelastic X-ray emission scattering experiments at the Cu 3p-, Cu 3s-, and O 1s-resonances of the insulating cuprates CuGeO 3, CuO, La 2 CuO 4, and SrCuO 2. We introduce the novel low-energy s-edge Cu-RIXS which reveals a dd-excitation peak, which was previously unobserved due to insufficient resolution and intensity in high-energy (Cu 1s RIXS). Also, O 1s-RIXS of all cuprate sample is investigated. Surprisingly, there is a large spread in the energy loss values of the RIXS features for different compounds and we explain this by assigning the larger energy features to the occurrence of a Zhang–Rice singlet while the lower energy feature (only observed for CuGeO 3) is assigned to a dd-excitation.


2000 ◽  
Vol 15 (02) ◽  
pp. 159-207 ◽  
Author(s):  
THORSTEN FELDMANN

I review to which extent the properties of pseudoscalar mesons can be understood in terms of the underlying quark (and eventually gluon) structure. Special emphasis is put on the progress in our understanding of η–η′ mixing. Process-independent mixing parameters are defined, and relations between different bases and conventions are studied. Both, the low-energy description in the framework of chiral perturbation theory and the high-energy application in terms of light-cone wave functions for partonic Fock states, are considered. A thorough discussion of theoretical and phenomenological consequences of the mixing approach will be given. Finally, I will discuss mixing with other states (π0, ηc, …).


1983 ◽  
Vol 61 (1) ◽  
pp. 1-5
Author(s):  
P. S. Ganas

A realistic analytic central potential is used to generate wave functions for the ground and excited states of lithium. Generalized oscillator strengths and integrated cross sections from threshold up to 5 keV are calculated in the Born approximation for 2s–ns, 2s–np and 2s–nd excitations. Comparison of the results with experimental data is discussed.


2018 ◽  
Vol 177 ◽  
pp. 03004
Author(s):  
M. Stepanov ◽  
L. Imasheva ◽  
B. Ishkhanov ◽  
T. Tretyakova

Excited states in low-energy spectra in nuclei near 208Pb are considered. The pure (j = 9/2)n configuration approximation with delta-force is used for ground state multiplet calculations. The multiplet splitting is determined by the pairing energy, which can be defined from the even-odd straggering of the nuclear masses. For the configurations with more than two valence nucleons, the seniority scheme is used. The results of the calculations agree with the experimental data for both stable and exotic nuclei within 0.06-6.16%. Due to simplicity and absence of the fitted parameters, the model can be easily applied for studies of nature of the excited states in a wide range of nuclei.


2006 ◽  
Vol 15 (02) ◽  
pp. 379-386 ◽  
Author(s):  
L. PRÓCHNIAK

Low energy quadrupole collective excitations are investigated using a model based on the Adiabatic Time Dependent HFB theory. Distinctive feature of proposed method is an extension of the collective space by adding variables referring to pairing degrees of freedom. In the microscopic part of the model effective Skyrme interaction and constant G pairing force are employed. Calculated energy levels and B(E2) transition probabilities in the 128 Xe nucleus are compared with the experimental data.


2006 ◽  
Vol 21 (31n33) ◽  
pp. 2411-2417 ◽  
Author(s):  
Mamoru Fujiwara ◽  
Hisako Fujimura

Spin-isospin excitations in 13 N have been studied by means of the (3 He ,t) and (3 He ,tp) reactions at the bombarding energy of E(3 He ) = 450 MeV . The zero-degree (3 He ,t) spectrum is found to be similar to those from the (p,n) reactions at intermediate energies, suggesting a simple direct reaction mechanism at E(3 He ) = 450 MeV . Three pairs of Gamow-Teller (GT) states with Jπ = 1/2- and 3/2- have been strongly excited at θlab. = 0°. Microscopic structures of the states in 13 N have been studied by observing decay protons in coincidence with high energy tritons measured at θlab. = 0°. The branching ratios for proton decay from the GT states in 13 N to the final low-lying T =0 states in 12 C were obtained. The wave functions of the excited states in 13 N are discussed in the view point of α cluster model.


Sign in / Sign up

Export Citation Format

Share Document