NONDESTRUCTIVE INTEGRITY EVALUATION OF PC PILE USING WIGNER-VILLE DISTRIBUTION METHOD

2008 ◽  
Vol 22 (11) ◽  
pp. 959-964
Author(s):  
SHENG-HUOO NI ◽  
KUO-FENG LO ◽  
YAN-HONG HUANG

Nondestructive evaluation (NDE) techniques have been used for years to provide a quality control of the construction for both drilled shafts and driven concrete piles. This trace is typically made up of transient pulses reflected from structural features of the pile or changes in its surrounding environment. It is often analyzed in conjunction with the spectral response, mobility curve, arrival time, etc. The Wigner-Ville Distribution is a new numerical analysis tool for signal process technique in the time-frequency domain and it can offer assistance and enhance signal characteristics for better resolution both easily and quickly. In this study, five single pre-cast concrete piles have been tested and evaluated by both sonic echo method and Wigner-Ville distribution (WVD). Furthermore, two difficult problems in nondestructive evaluation problems are discussed and solved: the first one is with a pile with slight defect, whose necking area percentage is less than 10%, and the other is a pile with multiple defects. The results show that WVD can not only recognize the characteristics easily, but also locate the defects more clearly than the traditional pile integrity testing method.

2007 ◽  
Vol 23 (1) ◽  
pp. 15-21 ◽  
Author(s):  
S.-H. Ni ◽  
J.-J. Charng ◽  
K.-F. Lo

AbstractThe Wigner-Ville Distribution is a new numerical analysis tool for signal process technique in the time-frequency domain and it can offer assistance and enhance signal characteristics for better resolution both easily and quickly. Time-frequency transform can describe how a spectrum of signals changes with time owing to defects and boundary conditions. In this study, five single pre-cast concrete piles have been tested and evaluated by both sonic echo method and Wigner-Ville distribution (WVD). The appropriateness of time-frequency domain analysis is discussed. Furthermore, two difficult problems in nondestructive evaluation problems are discussed and solved: the first one is with a pile with slight defect, whose necking area percentage is less than 10%, and the other is a pile with multiple defects. The results show that WVD can not only recognize the characteristics easily, but also locate the defects more clearly than the traditional pile integrity testing method.


1999 ◽  
Author(s):  
Ki-Woo Nam ◽  
Kun-Chan Lee ◽  
Jeong-Hwan Oh

Abstract Application of signal processing techniques to nondestructive evaluation (NDE) in general and acoustic emission (AE) studies in particular has become a standard tool in determining the frequency characteristics of the signals and relating these characteristics to the integrity of the structure under consideration. Recent studies have shown that the frequency characteristics of ultrasonic signals from evolving damage during cyclic (fatigue) and dynamic loads change with time; in other words, the signals are nonstationary, and that these changes can be related to the nature of the damage taking place during loading. A joint time-frequency analysis such as Short Time Fourier Transform (STFT) and Wigner-Ville distribution (WVD), can in principle be used to determine the time dependent frequency characteristics of nonstationary signals in presence of background noise. In this study these techniques are applied to analyze AE signals from fatigue crack propagation in 5083 aluminum alloys and ultrasonic signals in degraded austenitic 316 stainless steels, to study the evolution of damage in these materials. It is demonstrated that the nonstationary characteristics of both AE and ultrasonic signals could be analyzed effectively by these methods. STFT was found to be more effective in analyzing AE signals, and WVD was more effective for analyzing the attenuation and frequency characteristics of degraded materials through ultrasonics. It is indicated that the time-frequency analysis methods should also be useful in evaluating crack propagation and final fracture process resulting from various damages and defects in structural members.


Author(s):  
Wei Fan ◽  
Hongtao Xue ◽  
Cai Yi ◽  
Zhenying Xu

Condition monitoring and fault diagnosis of bearings in high-speed rail have attracted considerable attention in recent years, however, it’s still a hard work due to harsh environments with high speeds and high loads. A statistical condition monitoring and fault diagnosis method based on tunable Q-factor wavelet transform (TQWT) is developed in this study. The core idea of this method is that the TQWT can extract oscillatory behaviors of bearing faults. The vibration data under the normal condition are first decomposed by the TQWT into different wavelet coefficients. Two health indicators are then formulated by the dominant wavelet coefficients and the remaining coefficients for condition monitoring. The upper control limits are established using the one-sided confidence limit of the indicators by using the non-parametric bootstrap scheme. The Shewhart control charts on multiscale wavelet coefficients are constructed for fault diagnosis. We demonstrate the effectiveness of the proposed method by monitoring and diagnosing single and multiple railway axle bearing defects. Furthermore, the comparison studies show that the proposed method outperforms a traditional time-frequency method, the Wigner-Ville distribution method.


2008 ◽  
Vol 385-387 ◽  
pp. 601-604
Author(s):  
Ales Belsak ◽  
Joze Flasker

A crack in the tooth root is the least desirable damage of gear units, which often leads to failure of gear unit operation. A possible damage can be identified by monitoring vibrations. The influences that a crack in the tooth root of a single-stage gear unit has upon vibrations are dealt with. Changes in tooth stiffness are much more expressed in relation to a fatigue crack in the tooth root, whereas in relation to other faults, changes of other dynamic parameters are more expressed. Signal analysis has been performed in relation to a non-stationary signal, by means of the Time Frequency Analysis tool, such as Wavelets. Typical scalogram patterns resulting from reactions to faults or damages indicate the presence of faults or damages with a very high degree of reliability.


SoftwareX ◽  
2018 ◽  
Vol 8 ◽  
pp. 53-58 ◽  
Author(s):  
Boualem Boashash ◽  
Abdeldjalil Aïssa-El-Bey ◽  
Mohammad F. Al-Sa’d

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 735
Author(s):  
Xuhui He ◽  
Kehui Yu ◽  
Chenzhi Cai ◽  
Yunfeng Zou ◽  
Xiaojie Zhu

This paper focuses on the dynamic responses of a metro train–bridge system under train-braking. Experiments were performed on the elevated Metro Line 21 of Guangzhou (China). A continuous, three-span, rigid-frame bridge (42 m + 65 m + 42 m) and a standard B-type metro train were selected. The acceleration signals were measured at the center-points of the main span and one side-span, and the acceleration signals of the car body and the bogie frame were measured simultaneously. The train–bridge system’s vibration characteristics and any correlations with time and frequency were investigated. The Choi–Williams distribution method and wavelet coherence were introduced to analyze the obtained acceleration signals of the metro train–bridge system. The results showed that the Choi–Williams distribution provided a more explicit understanding of the time–frequency domain. The correlations between different parts of the bridge and the train–bridge system under braking conditions were revealed. The present study provides a series of measured dynamic responses of the metro train–bridge system under train-braking, which could be used as a reference in further investigations.


Author(s):  
Chi-Wei Kuo ◽  
C. Steve Suh

Time-delay feedback oscillators of non-autonomous type are considered in the paper. These oscillators have been studied extensively for many decades in a broad set of fields such as sensor design, manufacturing, and machine dynamics. A time-delay model system having one time-delay constant and several nonlinear feedback terms in the governing differential equation is first studied. Many researches have demonstrated that a time-delay feedback even in the form of a small perturbation is able to perturb the oscillator to exhibit complex dynamical responses including bifurcation and route-to-chaos. These motions are harmful as they have a very negative impact on the stability, and thus output quality, of the system. For example, manufacturing processes that are characterized by time-delay feedback all have an operation limit on speed because the chaotic behaviors which are unpredictable and extremely unstable are difficult to control. With a viable control solution, the performance, quality, and capacity of manufacturing can be improved enormously. A novel concept capable of simultaneous control of vibration amplitude in the time-domain and spectral response in the frequency-domain has been demonstrated to be feasible for the control of dynamic instability including bifurcation and route-to-chaos in many nonlinear systems. The concept is followed to create a control configuration that is feasible for the mitigation of non-autonomous time-delay feedback oscillators. Featuring wavelet adaptive filters for simultaneous time-frequency resolution and filtered-x least mean square algorithm for online identification, the controller design is shown to successfully moderate the dynamic instability of the time-delay feedback oscillator and unconditionally warrant a limit cycle. The controller design that integrates all these features is able to mitigate dynamical deterioration in both the time and frequency domains and properly regulate the responses with the desired reference signal. Specifically the qualitative behavior of the controlled oscillator output follows a definitive fractal topology before settling into a stable manifold. The controlled response is categorically quasi-periodic and of the prescribed vibration amplitude and frequency spectrum. The control scheme is novel and requires no linearization. By applying wavelet domain analysis approach to the nonlinear control of instability, the true dynamics of the time-delay feedback system as delineated by both the time and frequency information are faithfully retained without being distorted or misinterpreted. Through employing adaptive technique, the high sensitivity of the time-delay feedback system to external disturbances is also properly addressed.


Sign in / Sign up

Export Citation Format

Share Document