CdSe/ZnS core–shell QDs: Synthesis and investigating optical properties

2016 ◽  
Vol 30 (08) ◽  
pp. 1650093 ◽  
Author(s):  
M. Molaei ◽  
F. Sarhani ◽  
F. Salari Bardsiri ◽  
M. Karmipour

In this work, CdSe quantum dots (QDs) were synthesized using a microwave activated reaction between NaHSe and CdSO4 in the presence of thioglycolic acid (TGA) as capping molecule and then using a one-pot method, ZnS shell was grown subsequently around CdSe cores by a room temperature reaction based on the photo-sensitivity of Na2S2O3 dissociation. Synthesized QDs were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. All these analyses confirmed the formation of CdSe QDs and successful growth of ZnS shell around CdSe cores.

2016 ◽  
Vol 30 (07) ◽  
pp. 1650074 ◽  
Author(s):  
M. Molaei ◽  
F. Salari Bardsiri ◽  
A. R. Bahador ◽  
M. Karimipour

In this work, CdSe QDs were synthesized using a microwave assisted method and chemical reaction between NaHSe, CdSO4 at the presence of TGA as capping molecule. Thereafter without CdSe extraction, CdS shell was grown subsequently around CdSe cores by a reaction based on the heat sensitivity of Na2S2O3 dissociation. Synthesized QDs were characterized by means of X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), UV–Vis and photoluminescence (PL) spectroscopy. All of these analyzes confirmed formation of CdSe QDs and successfully growth of CdS shell on surface of CdSe to forming CdSe/CdS core-shell structure.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1141
Author(s):  
Georgia Basina ◽  
Hafsa Khurshid ◽  
Nikolaos Tzitzios ◽  
George Hadjipanayis ◽  
Vasileios Tzitzios

Fe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer. The injection temperature plays a very crucial role and higher temperatures enhance the stability and the resistance against oxidation. For the case of injection at 315 °C, the nanoparticles had around a 10 nm mean diameter and revealed 132 emu/g. Remarkably, a stable dispersion was created due to the colloids’ surface functionalization in a nonpolar solvent.


2010 ◽  
Vol 97-101 ◽  
pp. 4213-4216
Author(s):  
Jian Xiong Liu ◽  
Zheng Yu Wu ◽  
Guo Wen Meng ◽  
Zhao Lin Zhan

Novel single-crystalline SnO2 zigzag nanoribbons have been successfully synthesized by chemical vapour deposition. Sn powder in a ceramic boat covered with Si plates was heated at 1100°C in a flowing argon atmosphere to get deposits on a Si wafers. The main part of deposits is SnO2 zigzag nanoribbons. They were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SEM observations reveal that the SnO2 zigzag nanoribbons are almost uniform, with lengths near to several hundred micrometers and have a good periodically tuned microstructure as the same zigzag angle and growth directions. Possible growth mechanism of these zigzag nanoribbons was discussed. A room temperature PL spectrum of the zigzag nanoribbons shows three peaks at 373nm, 421nm and 477nm.The novel zigzag microstructures will provide a new candidate for potential application.


2015 ◽  
Vol 815 ◽  
pp. 217-221
Author(s):  
Ling Li Xu ◽  
Xing Ling Shi ◽  
Qing Liang Wang

nanocrystalline cellulose (NCC) was prepared from micro-crystalline cellulose (MCC) by strong acid hydrolysis. The characteristics of such particle were studied by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Electro-rheological fluids (ERF) were prepared by dispersing NCC and MCC in methyl-silicone oil, and their ER effects were measured. Experimental results indicated that NCC ERF exhibited a remarkable ER effect. The highest static shearing stress of NCC ERF (3.5 g/ml) was 5.1 kPa at the room temperature under a 4 .2 kV/mm electric field, increased about 5.5 times compared to MCC ERF, and sedimentation of NCC ERF was not observed even after 60 days.


2011 ◽  
Vol 189-193 ◽  
pp. 1275-1279
Author(s):  
Ying Wang ◽  
Gao Yang Zhao ◽  
Li Yuan

The crystalline phase and morphology of the products formed during the synthesis of yttrium oxide via the hydrothermal treatment yttrium nitrate were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Products with high OH/NO3ratios are formed with the increasing of hydrothermal treatment. The crystalline phases are evolved from Y2(OH)5.14(NO3)0.86•H2O toY4O(OH)9(NO3) and finally Y(OH)3. The hydrothermal reaction conditions play an important role in the synthesis of the microstructures. Results show the particle size and final morphology of samples could be controlled by reaction temperature, reaction time, and OH-concentration. Sheets, hexagonal and needle-like Y2O3powders are obtained with the hydrothermal treatment of yittrium nitrate at 180 oC to 200oC for 2-8 hours at pH 9-13.


2005 ◽  
Vol 20 (3) ◽  
pp. 563-566 ◽  
Author(s):  
Tetsuji Saito ◽  
Hiroyuku Takeishi ◽  
Noboru Nakayama

We report a new compression shearing method for the production of bulk amorphous materials. In this study, amorphous Nd–Fe–B melt-spun ribbons were successfully consolidated into bulk form at room temperature by the compression shearing method. X-ray diffraction and transmission electron microscopy studies revealed that the amorphous structure was well maintained in the bulk materials. The resultant bulk materials exhibited the same magnetic properties as the original amorphous Nd–Fe–B materials.


2019 ◽  
Vol 43 (3-4) ◽  
pp. 135-139
Author(s):  
Pegah Farokhian ◽  
Manouchehr Mamaghani ◽  
Nosrat Ollah Mahmoodi ◽  
Khalil Tabatabaeian ◽  
Abdollah Fallah Shojaie

An efficient protocol for the facile synthesis of a series of pyrido[2,3- d]pyrimidine derivatives has been developed applying Fe3O4–ZnO–NH2–PW12O40 nanocatalyst in water. This novel method has the benefits of operational simplicity, green aspects by avoiding toxic solvents and high to excellent yields of products. Fe3O4–ZnO–NH2–PW12O40 was synthesized and characterized by Fourier transform infrared, X-ray diffraction, vibrating sample magnetometer, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy analyses. The nanocatalyst is readily isolated and recovered from the reaction mixture by an external magnet.


CrystEngComm ◽  
2020 ◽  
Vol 22 (21) ◽  
pp. 3644-3655
Author(s):  
Stefan Neumann ◽  
Christina Menter ◽  
Ahmed Salaheldin Mahmoud ◽  
Doris Segets ◽  
David Rafaja

Capability of TEM and XRD to reveal scale-bridging information about the microstructure of non-monodisperse quantum dots is illustrated on the CdSe quantum dots synthesized using an automated hot-injection method.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 999
Author(s):  
Yi-An Chen ◽  
Kuo-Hsien Chou ◽  
Yi-Yang Kuo ◽  
Cheng-Ye Wu ◽  
Po-Wen Hsiao ◽  
...  

To the best of our knowledge, this report presents, for the first time, the schematic of the possible chemical reaction for a one-pot synthesis of Zn0.5Cd0.5Se alloy quantum dots (QDs) in the presence of low/high oleylamine (OLA) contents. For high OLA contents, high-resolution transmission electron microscopy (HRTEM) results showed that the average size of Zn0.5Cd0.5Se increases significantly from 4 to 9 nm with an increasing OLA content from 4 to 10 mL. First, [Zn(OAc)2]–OLA complex can be formed by a reaction between Zn(OAc)2 and OLA. Then, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) data confirmed that ZnO is formed by thermal decomposition of the [Zn(OAc)2]–OLA complex. The results indicated that ZnO grew on the Zn0.5Cd0.5Se surface, thus increasing the particle size. For low OLA contents, HRTEM images were used to estimate the average sizes of the Zn0.5Cd0.5Se alloy QDs, which were approximately 8, 6, and 4 nm with OLA loadings of 0, 2, and 4 mL, respectively. We found that Zn(OAc)2 and OLA could form a [Zn(OAc)2]–OLA complex, which inhibited the growth of the Zn0.5Cd0.5Se alloy QDs, due to the decreasing reaction between Zn(oleic acid)2 and Se2−, which led to a decrease in particle size.


Sign in / Sign up

Export Citation Format

Share Document