Evolution of Crystalline Phase and Morphology of the Products Formed during the Hydrothermal Synthesis of Y2O3 Powders

2011 ◽  
Vol 189-193 ◽  
pp. 1275-1279
Author(s):  
Ying Wang ◽  
Gao Yang Zhao ◽  
Li Yuan

The crystalline phase and morphology of the products formed during the synthesis of yttrium oxide via the hydrothermal treatment yttrium nitrate were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Products with high OH/NO3ratios are formed with the increasing of hydrothermal treatment. The crystalline phases are evolved from Y2(OH)5.14(NO3)0.86•H2O toY4O(OH)9(NO3) and finally Y(OH)3. The hydrothermal reaction conditions play an important role in the synthesis of the microstructures. Results show the particle size and final morphology of samples could be controlled by reaction temperature, reaction time, and OH-concentration. Sheets, hexagonal and needle-like Y2O3powders are obtained with the hydrothermal treatment of yittrium nitrate at 180 oC to 200oC for 2-8 hours at pH 9-13.

2020 ◽  
Vol 98 (12) ◽  
pp. 771-778
Author(s):  
Xin Chang ◽  
Xiangyang Xu ◽  
Zhifeng Gao ◽  
Yingrui Tao ◽  
Yixuan Yin ◽  
...  

A nanocomposite, reduced graphene oxide (RGO) modified ZnCo2O4 (ZnCo2O4–RGO) was synthesized via one-step solvothermal method for activating persulfate (PS) to degrade bisphenol A (BPA). The morphology and structure of the nanocomposite were identified by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. RGO provides nucleation sites for ZnCo2O4 to grow and inhibits the agglomeration of the nanoparticles. The influence of different reaction conditions on the oxidation of BPA catalyzed by ZnCo2O4–RGO was investigated, including the content of RGO, the dosage of catalyst, the concentration of humic acid (HA), anions in the environment, the reaction temperature, and pH. BPA can be totally degraded within 20 min under optimized reaction conditions. The presence of HA, Cl−, and NO3− only has a slight effect on the oxidation of BPA, whereas the presence of either H2PO4− or HCO3− can greatly inhibit the reaction. ZnCo2O4–RGO shows good cycling stability and practical application potential. A reaction mechanism of the degradation of BPA was also explored.


2013 ◽  
Vol 745-746 ◽  
pp. 309-314 ◽  
Author(s):  
Si Min Yin ◽  
Gang Xu ◽  
Zhao Hui Ren ◽  
Chun Ying Chao ◽  
Ge Shen ◽  
...  

Perovskite lead titanate crystals with various morphologies were successfully synthesized via a hydrothermal reaction route with different lead sources. X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were employed to characterize the phase composition and the morphology of the synthesized products. In order to investigate the effect of the lead source on the phase formation and morphology evolution of the synthesized pervoskite PbTiO3 crystals, PbO, PbF2, PbSO4 and Pb (CH3COO)3 ·3H2O, were used as starting precursor lead source introduced into the hydrothermal reaction system, respectively. Accordingly, perovskite PbTiO3 brken cubes, irregular particles, cubic particles, and microplates were obtained, respectively. Based on the experimental results, the effect of lead source was simply discussed.


2008 ◽  
Vol 368-372 ◽  
pp. 329-332 ◽  
Author(s):  
Yang Feng Huang ◽  
Han Ning Xiao ◽  
Shu Guang Chen

ZnO nanorods were prepared by a hydrothermal reaction in the presence or absence of PVP (polyvinyl pyrrolidone). The obtained products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, UV-Vis absorption (UV) spectroscopy and photoluminescence (PL) spectroscopy. The results suggest that PVP plays an important role in the preparation of ZnO nanorods. The UV absorption spectrum showed PVP increases the UV-shielding ability but doesn’t influence the transparency in the visible light region. A weak UV emission at 353 nm of PL spectra exhibit the surface of ZnO nanorods is passivated and oxygen-related defects is supplied by PVP.


2013 ◽  
Vol 331 ◽  
pp. 522-526
Author(s):  
Jiang Wang ◽  
Jian Li ◽  
You Wen Wang

When the self-made with Teflon lined with stainless steel reaction kettle is used to produce PbTiO3 nanowires with the adoption of hydrothermal reaction , PbTiO3 nanowires with new structure can be made when Pb/Ti equals 2.2. Observed through the Transmission Electron Microscopy (TEM), the bending feature of the PbTiO3 nanowires can be observed for several times when X-ray diffraction (XRD) and Electron Backscattered Diffraction (EBSD) are used to analyse and test the crystal structure of the nanowires. The result of the study shows that the degree of the bending of the PbTiO3 nanowires varies with the intensity of the electron beam from the Transmission Electron Microscopy, and its process can be reversible.


2014 ◽  
Vol 5 ◽  
pp. 1553-1568 ◽  
Author(s):  
Ahmed Salama ◽  
Mike Neumann ◽  
Christina Günter ◽  
Andreas Taubert

Cellulose/calcium phosphate hybrid materials were synthesized via an ionic liquid-assisted route. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis show that, depending on the reaction conditions, cellulose/hydroxyapatite, cellulose/chlorapatite, or cellulose/monetite composites form. Preliminary studies with MC3T3-E1 pre-osteoblasts show that the cells proliferate on the hybrid materials suggesting that the ionic liquid-based process yields materials that are potentially useful as scaffolds for regenerative therapies.


2014 ◽  
Vol 496-500 ◽  
pp. 297-300 ◽  
Author(s):  
Bi Tao Liu ◽  
Liang Liang Tian ◽  
Ling Ling Peng

A series of composites of the high photoactivity of {001} facets exposed BiOCl and grapheme sheets (GS) were synthesized via a one-step hydrothermal reaction. The obtained BiOCl/GS photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy. The as-prepared BiOCl/GS photocatalyst showed enhanced photocatalytic activity for the degradation of methyl orange (MO) under UV and visible light (λ > 400 nm). The enhanced photocatalytic activity could be attributed to oxygen vacancies of the {001} facets of BiOCl/GS and the high migration efficiency of photo-induced electrons, which could suppress the charge recombination effectively.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Zhao ◽  
Fenfei Xiao ◽  
Qingze Jiao

Ni/Al layered double hydroxide (LDH) nanorods were successfully synthesized by the hydrothermal reaction. The crystal structure of the products was characterized by X-ray diffraction (XRD). The morphology of the products was observed using transmission electron microscopy (TEM) and field emission scanning electron microscopy (SEM). The influences of reaction time and pH value on the morphology of the Ni/Al LDHs were investigated. The result showed that the well-crystallized nanorods of Ni/Al LDHs could be obtained when the pH value was about 10.0 with a long reaction time (12–18 h) at 180°C.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1959
Author(s):  
Matjaž Kristl ◽  
Sašo Gyergyek ◽  
Srečo D. Škapin ◽  
Janja Kristl

The paper reports the synthesis of nickel tellurides via a mechanochemical method from elemental precursors. NiTe, NiTe2, and Ni2Te3 were prepared by milling in stainless steel vials under nitrogen, using milling times from 1 h to 12 h. The products were characterized by powder X-ray diffraction (pXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), UV-VIS spectrometry, and thermal analysis (TGA and DSC). The products were obtained in the form of aggregates, several hundreds of nanometers in size, consisting of smaller nanosized crystallites. The magnetic measurements revealed a ferromagnetic behavior at room temperature. The band gap energies calculated using Tauc plots for NiTe, NiTe2, and Ni2Te3 were 3.59, 3.94, and 3.70 eV, respectively. The mechanochemical process has proved to be a simple and successful method for the preparation of binary nickel tellurides, avoiding the use of solvents, toxic precursors, and energy-consuming reaction conditions.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Vidhisha Jassal ◽  
Uma Shanker ◽  
B. S. Kaith

Prussian blue analogue potassium metal hexacyanoferrate (KMHCF) nanoparticles Fe4[Fe(CN)6]3(FeHCF), K2Cu3[Fe(CN)6]2(KCuHCF), K2Ni[Fe(CN)6]·3H2O (KNiHCF), and K2Co[Fe(CN)6] (KCoHCF) have been synthesized using plant based biosurfactantAegle marmelos(Bael) and water as a green solvent. It must be emphasized here that no harmful reagent or solvent was used throughout the study. Plant extracts are easily biodegradable and therefore do not cause any harm to the environment. Hence, the proposed method of synthesis of various KMHCF nanoparticles followed a green path. The synthesized nanoparticles were characterized by powder X-ray diffraction (PXRD), Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FT-IR). MHCF nanoparticles were used for the photocatalytic degradation of toxic dyes like Malachite Green (MG), Eriochrome Black T (EBT), Methyl Orange (MO), and Methylene Blue (MB). Under optimized reaction conditions, maximum photocatalytic degradation was achieved in case of KCuHCF nanoparticles mediated degradation process (MG: 96.06%, EBT: 83.03%, MB: 94.72%, and MO: 63.71%) followed by KNiHCF (MG: 95%, EBT: 80.32%, MB: 91.35%, and MO: 59.42%), KCoHCF (MG: 91.45%, EBT: 78.84%, MB: 89.28%, and MO: 58.20%).


2015 ◽  
Vol 1721 ◽  
Author(s):  
Kairat Sabyrov ◽  
Virany M. Yuwono ◽  
R. Lee Penn

ABSTRACTSingle-crystalline rutile with porous and complex structure can be produced by tuning reaction conditions so as to maintain low titania solubility. X-ray diffraction, high-resolution transmission electron microscopy, and cryogenic transmission electron microscopy results are consistent with the hypothesis that oriented aggregation of anatase crystals precedes rutile nucleation and growth from anatase nanocrystal interfaces. The product rutile retains morphological and microstructure features consistent with an aggregation-based phase transformation because coarsening, or monomer-by-monomer growth, is suppressed under these conditions of low titania solubility.


Sign in / Sign up

Export Citation Format

Share Document