Multi-band polarization independent cylindrical metamaterial absorber and sensor application

2016 ◽  
Vol 30 (08) ◽  
pp. 1650095 ◽  
Author(s):  
Furkan Dincer ◽  
Muharrem Karaaslan ◽  
Sule Colak ◽  
Erkan Tetik ◽  
Oguzhan Akgol ◽  
...  

A multi-band perfect metamaterial absorber (MA) based on a cylindrical waveguide with polarization independency is numerically presented and investigated in detail. The proposed absorber has a very simple configuration, and it operates at flexible frequency ranges within the microwave frequency regime by simply tuning the dimensions of the structure. The maximum absorption values are obtained as 99.9%, 97.5%, 85.8%, 68.2% and 40.2% at the frequencies of 1.34 GHz, 2.15 GHz, 3.2 GHz, 4.31 GHz and 5.41 GHz, respectively. The numerical studies verify that the proposed model can provide multi-band perfect absorptions at wide polarization and incident angles due to its rotational symmetry feature. We have also realized sensor and parametric study applications in order to show additional features of the suggested model. The suggested MA enables myriad potential applications in medical technologies, sensors and in defense industry etc.

2016 ◽  
Vol 30 (20) ◽  
pp. 1650133 ◽  
Author(s):  
Mehmet Bakir ◽  
Muharrem Karaaslan ◽  
Furkan Dincer ◽  
Oguzhan Akgol ◽  
Cumali Sabah

The proposed study presents an electromagnetic (EM) energy harvesting and density sensor application based on a perfect metamaterial absorber (MA) in microwave frequency regime. In order to verify the absorption behavior of the structure, its absorption behavior is experimentally tested along with the energy harvesting and sensing abilities. The absorption value is experimentally found 0.9 at the resonance frequency of 4.75 GHz. In order to harvest the EM energy, chips resistors are used. In addition, the suggested model is analyzed for its dependency on polarization angles. The results show that the perfect MA can be easily and efficiently used for EM energy harvesting applications. Moreover, as an additional feature of the model, we also realized a density sensor application. It can be seen that this structure can be used as a multi-functional device and configured for many other sensing applications.


2017 ◽  
Vol 31 (15) ◽  
pp. 1750176 ◽  
Author(s):  
O. Akgol ◽  
M. Karaaslan ◽  
E. Unal ◽  
C. Sabah

Perfect metamaterial absorber (MA)-based sensor applications are presented and investigated in the microwave frequency range. It is also experimentally analyzed and tested to verify the behavior of the MA. Suggested perfect MA-based sensor has a simple configuration which introduces flexibility to sense the dielectric properties of a material and the pressure of the medium. The investigated applications include pressure and density sensing. Besides, numerical simulations verify that the suggested sensor achieves good sensing capabilities for both applications. The proposed perfect MA-based sensor variations enable many potential applications in medical or food technologies.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2193 ◽  
Author(s):  
Taiguo Lu ◽  
Dawei Zhang ◽  
Peizhen Qiu ◽  
Jiqing Lian ◽  
Ming Jing ◽  
...  

We designed an ultra-thin dual-band metamaterial absorber by adjusting the side strips’ length of an H-shaped unit cell in the opposite direction to break the structural symmetry. The dual absorption peaks approximately 99.95% and 99.91% near the central resonance frequency of 4.72 THz and 5.0 THz were obtained, respectively. Meanwhile, a plasmon-induced transmission (PIT) like reflection window appears between the two absorption frequencies. In addition to theoretical explanations qualitatively, a multi-reflection interference theory is also investigated to prove the simulation results quantitatively. This work provides a way to obtain perfect dual-band absorption through an asymmetric metamaterial structure, and it may achieve potential applications in a variety of fields including filters, sensors, and some other functional metamaterial devices.


2020 ◽  
Vol 8 ◽  
Author(s):  
Guangsheng Deng ◽  
Kun Lv ◽  
Hanxiao Sun ◽  
Zhiping Yin ◽  
Jun Yang

In this work, a single-band metamaterial absorber (MA) based on a three dimensional (3D) resonant structure is presented. The unit cell is composed of a standing gear-shaped resonator, which is embedded in the dielectric substrate. The proposed 3D MA is ultrathin with a total thickness of 2.3 mm, corresponding 0.077λ0 at its center frequency. The simulation results demonstrate a high absorption peak at 10.1 GHz with absorptivity of 99.9%. The proposed 3D MA is insensitive to the polarization of the incident wave due to its rotationally symmetric structure. Moreover, the proposed 3D MA exhibits a wide-incident-angle stability, as absorptivity of more than 85% can be achieved for both TE and TM incidences with incident angle up to 60°. Most importantly, multiband electromagnetic wave absorption of the stereo MA can be enabled by adjusting the structural parameters of the standing gear. The proposed structure is compatible with 3D printing technology and has potential applications in electromagnetic shielding.


2020 ◽  
Vol 7 ◽  
pp. 2
Author(s):  
Zhaomei Liu ◽  
Xingxing Han ◽  
Aixia Wang

In this paper, an ultrathin and polarization-insensitive THz perfect metamaterial absorber (PMA) was proposed using the traditional sandwiched structure with circular patch resonators on the top layer. The simulated spectrum shows that the proposed PMA has three distinctive absorption peaks at f1 = 0.8 THz, f2 = 2.28 THz and f3 = 3.62 THz, with absorbance of 96.7%, 97.9% and 99.8%, respectively. The electric field distributions of the PMA reveal that the absorption mainly originates from the standing wave resonances between the top and bottom layers. The proposed PMA is polarization insensitive due to its axisymmetric unit cell structure. By adjusting the structure parameters, the resonance frequency, intensity and Q-factor of absorption peak can be tuned effectively. Our design may find potential applications in THz imaging, sensing and signal detection.


2019 ◽  
Vol 11 (1) ◽  
pp. 133-144 ◽  
Author(s):  
Khalid Saeed Lateef Al-badri

Purpose – This paper presents a simulation study using CST microwave studio computer software. Methodology/approach/design – A simple structure based on metamaterial are used to construct a perfect metamaterial absorber. It is made of just one uncompleted square patch copper placed on top of dielectric layer to separate it from a copper ground plate. Findings – This design provides four perfect absorption regions with absorption peaks of an average of 93%. The characteristic study of parameters such as copper dimensions and dielectric properties led to an expected result in the synthesis of resonant frequency. Practical implications – The multi-band absorption can be used in energy harvesting applications, protection from the effects of electromagnetic waves, radar stealth technology and thermal imaging. Moreover, the experimental results show good agreement with CST simulation.


Sign in / Sign up

Export Citation Format

Share Document