scholarly journals MEDICAL IMAGE SEGMENTATION USING FUZZY C-MEAN (FCM) AND USER SPECIFIED DATA

2010 ◽  
Vol 19 (01) ◽  
pp. 1-14 ◽  
Author(s):  
M. A. BALAFAR ◽  
A. B. D. RAHMAN RAMLI ◽  
M. IQBAL SARIPAN ◽  
SYAMSIAH MASHOHOR ◽  
ROZI MAHMUD

Image segmentation is one of the most important parts of clinical diagnostic tools. Medical images mostly contain noise and inhomogeneity. Therefore, accurate segmentation of medical images is a very difficult task. However, the process of accurate segmentation of these images is very important and crucial for a correct diagnosis by clinical tools. We proposed a new clustering method based on Fuzzy C-Mean (FCM) and user specified data. In the postulated method, the color image is converted to grey level image and anisotropic filter is applied to decrease noise; User selects training data for each target class, afterwards, the image is clustered using ordinary FCM. Due to inhomogeneity and unknown noise some clusters contain training data for more than one target class. These clusters are partitioned again. This process continues until there are no such clusters. Then, the clusters contain training data for a target class assigned to that target class; mean of intensity in each class is considered as feature for that class, afterwards, feature distance of each unsigned cluster from different class is found then unsigned clusters are signed to target class with least distance from. Experimental result is demonstrated to show effectiveness of new method.

2010 ◽  
Vol 19 (01) ◽  
pp. 203-214 ◽  
Author(s):  
M. A. BALAFAR ◽  
A. B. D. RAHMAN RAMLI ◽  
M. IQBAL SARIPAN ◽  
SYAMSIAH MASHOHOR ◽  
ROZI MAHMUD

Image segmentation is a preliminary stage in diagnosis tools and the accurate segmentation of medical images is crucial for a correct diagnosis by these tools. Sometimes, due to inhomogeneity, low contrast, noise and inequality of content with semantic, automatic methods fail to segment image correctly. Therefore, for these images, it is necessary to use user help to correct method's error. We proposed to upgrade FAST FCM method to use training data to have more accurate results. In this paper, instead of using pixels as training data which is usual, we used different gray levels as training data and that is why we have used FAST FCM, because the input of FAST FCM is gray levels exist in image (histogram of the image). We named the new clustering method improved fast fuzzy C-mean (FCM). We use two facts to improve fast FCM. First, training data for each class are the member of the class. Second, the relevance distance of each input data from the training data of a class show the distance of the input data from the class. To cluster an image, first, the color image is converted to gray level image; then, from histogram of image, user selects training data for each target class, afterwards, the image is clustered using postulated clustering method. Experimental result is demonstrated to show effectiveness of the new method.


2019 ◽  
Vol 8 (4) ◽  
pp. 9548-9551

Fuzzy c-means clustering is a popular image segmentation technique, in which a single pixel belongs to multiple clusters, with varying degree of membership. The main drawback of this method is it sensitive to noise. This method can be improved by incorporating multiresolution stationary wavelet analysis. In this paper we develop a robust image segmentation method using Fuzzy c-means clustering and wavelet transform. The experimental result shows that the proposed method is more accurate than the Fuzzy c-means clustering.


2016 ◽  
Vol 78 (4-3) ◽  
Author(s):  
Hussain Rahman ◽  
Fakhrud Din ◽  
Sami ur Rahmana ◽  
Sehatullah Sehatullah

Region-growing based image segmentation techniques, available for medical images, are reviewed in this paper. In digital image processing, segmentation of humans' organs from medical images is a very challenging task. A number of medical image segmentation techniques have been proposed, but there is no standard automatic algorithm that can generally be used to segment a real 3D image obtained in daily routine by the clinicians. Our criteria for the evaluation of different region-growing based segmentation algorithms are: ease of use, noise vulnerability, effectiveness, need of manual initialization, efficiency, computational complexity, need of training, information used, and noise vulnerability. We test the common region-growing algorithms on a set of abdominal MRI scans for the aorta segmentation. The evaluation results of the segmentation algorithms show that region-growing techniques can be a better choice for segmenting an object of interest from medical images.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lin Teng ◽  
Hang Li ◽  
Shahid Karim

Medical image segmentation is one of the hot issues in the related area of image processing. Precise segmentation for medical images is a vital guarantee for follow-up treatment. At present, however, low gray contrast and blurred tissue boundaries are common in medical images, and the segmentation accuracy of medical images cannot be effectively improved. Especially, deep learning methods need more training samples, which lead to time-consuming process. Therefore, we propose a novelty model for medical image segmentation based on deep multiscale convolutional neural network (CNN) in this article. First, we extract the region of interest from the raw medical images. Then, data augmentation is operated to acquire more training datasets. Our proposed method contains three models: encoder, U-net, and decoder. Encoder is mainly responsible for feature extraction of 2D image slice. The U-net cascades the features of each block of the encoder with those obtained by deconvolution in the decoder under different scales. The decoding is mainly responsible for the upsampling of the feature graph after feature extraction of each group. Simulation results show that the new method can boost the segmentation accuracy. And, it has strong robustness compared with other segmentation methods.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1230
Author(s):  
Xiaofei Qin ◽  
Chengzi Wu ◽  
Hang Chang ◽  
Hao Lu ◽  
Xuedian Zhang

Medical image segmentation is a fundamental task in medical image analysis. Dynamic receptive field is very helpful for accurate medical image segmentation, which needs to be further studied and utilized. In this paper, we propose Match Feature U-Net, a novel, symmetric encoder– decoder architecture with dynamic receptive field for medical image segmentation. We modify the Selective Kernel convolution (a module proposed in Selective Kernel Networks) by inserting a newly proposed Match operation, which makes similar features in different convolution branches have corresponding positions, and then we replace the U-Net’s convolution with the redesigned Selective Kernel convolution. This network is a combination of U-Net and improved Selective Kernel convolution. It inherits the advantages of simple structure and low parameter complexity of U-Net, and enhances the efficiency of dynamic receptive field in Selective Kernel convolution, making it an ideal model for medical image segmentation tasks which often have small training data and large changes in targets size. Compared with state-of-the-art segmentation methods, the number of parameters in Match Feature U-Net (2.65 M) is 34% of U-Net (7.76 M), 29% of UNet++ (9.04 M), and 9.1% of CE-Net (29 M). We evaluated the proposed architecture in four medical image segmentation tasks: nuclei segmentation in microscopy images, breast cancer cell segmentation, gland segmentation in colon histology images, and disc/cup segmentation. Our experimental results show that Match Feature U-Net achieves an average Mean Intersection over Union (MIoU) gain of 1.8, 1.45, and 2.82 points over U-Net, UNet++, and CE-Net, respectively.


2020 ◽  
Vol 2020 (10) ◽  
pp. 62-1-62-6
Author(s):  
V. Voronin ◽  
M. Zhdanova ◽  
E. Semenishchev ◽  
A. Zelensky ◽  
S. Agaian

This paper presents a new method for segmenting medical images is based on Hamiltonian quaternions and the associative algebra, method of the active contour model and LPA-ICI (local polynomial approximation - the intersection of confidence intervals) anisotropic gradient. Since for segmentation tasks, the image is usually converted to grayscale, this leads to the loss of important information about color, saturation, and other important information associated color. To solve this problem, we use the quaternion framework to represent a color image to consider all three channels simultaneously when segmenting the RGB image. As a method of noise reduction, adaptive filtering based on local polynomial estimates using the ICI rule is used. The presented new approach allows obtaining clearer and more detailed boundaries of objects of interest. The experiments performed on real medical images (Z-line detection) show that our segmentation method of more efficient compared with the current state-of-art methods.


Author(s):  
Ramgopal Kashyap ◽  
Pratima Gautam

Medical applications became a boon to the healthcare industry. It needs correct and fast segmentation associated with medical images for correct diagnosis. This assures high quality segmentation of medical images victimization. The Level Set Method (LSM) is a capable technique, however the quick process using correct segments remains difficult. The region based models like Active Contours, Globally Optimal Geodesic Active Contours (GOGAC) performs inadequately for intensity irregularity images. During this cardstock, we have a new tendency to propose an improved region based level set model motivated by the geodesic active contour models as well as the Mumford-Shah model. So that you can eliminate the re-initialization process of ancient level set model and removes the will need of computationally high priced re-initialization. Compared using ancient models, our model are sturdier against images using weak edge and intensity irregularity.


Biometrics ◽  
2017 ◽  
pp. 1788-1802 ◽  
Author(s):  
Nihar Ranjan Nayak ◽  
Bikram Keshari Mishra ◽  
Amiya Kumar Rath ◽  
Sagarika Swain

The findings of image segmentation reflects its expansive applications and existence in the field of digital image processing, so it has been addressed by many researchers in numerous disciplines. It has a crucial impact on the overall performance of the intended scheme. The goal of image segmentation is to assign every image pixels into their respective sections that share a common visual characteristic. In this paper, the authors have evaluated the performances of three different clustering algorithms normally used in image segmentation – the typical K-Means, its modified K-Means++ and their proposed Enhanced Clustering method. The idea is to present a brief explanation of the fundamental working principles implicated in these methods. They have analyzed the performance criterion which affects the outcome of segmentation by considering two vital quality measures namely – Structural Content (SC) and Root Mean Square Error (RMSE) as suggested by Jaskirat et al., (2012). Experimental result shows that, the proposed method gives impressive result for the computed values of SC and RMSE as compared to K-Means and K-Means++. In addition to this, the output of segmentation using the Enhanced technique reduces the overall execution time as compared to the other two approaches irrespective of any image size.


Author(s):  
S. DivyaMeena ◽  
M. Mangaleswaran

Medical images have made a great effect on medicine, diagnosis, and treatment. The most important part of image processing is image segmentation. Medical Image Segmentation is the development of programmed or semi-automatic detection of limitations within a 2D or 3D image. In medical field, image segmentation is one of the vital steps in Image identification and Object recognition. Image segmentation is a method in which large data is partitioned into small amount of data. If the input MRI image is segmented then identifying the lump attacked region will be easier for physicians. In recent days, many algorithms are proposed for the image segmentation. In this paper, an analysis is made on various segmentation algorithms for medical images. Furthermore, a comparison of existing segmentation algorithms is also discussed along with the performance measure of each.


Sign in / Sign up

Export Citation Format

Share Document