Current-Mode nth-Order Filter Based on a Minimal Component

2016 ◽  
Vol 25 (05) ◽  
pp. 1650035 ◽  
Author(s):  
Meili Cao ◽  
Haizhen He ◽  
Hairong Lin ◽  
Hao Peng ◽  
Bohui Zhu

In this paper, a new active current-mode (CM) minimal component, cascaded current differencing unit (CCDU) and a CM nth-order filter based on the CCDU have been presented. The proposed CCDU simplifies the design of the CM nth-order filter circuit considerably. The proposed nth-order circuit, which adopts only an active component and n grounded capacitors, can simultaneously realize low-pass (LP), band-pass (BP) and high-pass (HP) filter responses. It enjoys the simple configuration and is suitable for integrated circuit (IC) fabrication. PSPICE simulations and experimental tests for CM third-order filter based on this structure have also been conducted and the results have good agreement with the theoretical analysis.

2013 ◽  
Vol 787 ◽  
pp. 501-507
Author(s):  
Saksit Summart ◽  
Chanchai Thongsopa

This article presents current-mode universal biquad filters based on CDTAs. The filter circuits using four CDTAs and two grounded capacitors which are able to provide low-pass, high-pass, band-pass, band-reject and all-pass functions. The pole frequency can be orthogonally controlled from quality factor and the circuits have high output impedance appropriate for cascade connection application in current mode which is capable to directly drive load. This qualification is very appropriate for further development into an integrated circuit. The results of PSPICE simulation program are corresponding to the theoretical analysis.


2012 ◽  
Vol 21 (01) ◽  
pp. 1250013 ◽  
Author(s):  
MEHMET SAGBAS ◽  
MUHAMMET KOKSAL

In this paper, a general electronically tunable resistorless biquad, which realizes current ratio transfer function using current backward transconductance amplifiers is proposed. The biquad contains only two active components and two grounded capacitors, which make it convenient for production by the integrated circuit technology. The proposed biquad realizes all of the basic second order filter characteristics: low pass, high pass, band pass, band reject, and finally all pass. It is convenient for cascading with other similar biquads as well as with any two-port circuit with low impedance input to achieve higher order filter characteristics. The simulations that are performed using PSPICE simulator exhibit satisfactory results coherent with the theory.


2007 ◽  
Vol 16 (04) ◽  
pp. 507-516 ◽  
Author(s):  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a universal current-mode second-order active-C filter for simultaneously realizing low-pass, band-pass and high-pass responses is proposed. The presented filter employs only three plus-type second-generation current-controlled conveyors (CCCII+s). This filter needs no critical active and passive component matching conditions and no additional active and passive elements for realizing high output impedance low-pass, band-pass and high-pass characteristics. The angular resonance frequency (ω0) and quality factor (Q) of the proposed resistorless filter can be tuned electronically. To verify the theoretical analysis and to exhibit the performance of the proposed filter, it is simulated with SPICE program.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Dinesh Prasad ◽  
Mayank Srivastava ◽  
D. R. Bhaskar

A new resistorless single-input-multi-output (SIMO) universal transadmittance (TA) type filter employing two voltage differencing transconductance amplifiers (VDTA) and two grounded capacitors is proposed. The proposed topology realizes simultaneously low pass (LP), high pass (HP), and band pass (BP) filter functions. Band rejects (BR) and all pass (AP) filters are also realizable through appropriate connections of currents. The proposed configuration also offers independent control of natural angular frequency (ω0) and bandwidth (BW) and low active and passive sensitivities. The workability of proposed configuration has been demonstrated through PSPICE simulations with TSMC CMOS 0.18 μm process parameters.


2016 ◽  
Vol 25 (12) ◽  
pp. 1650154 ◽  
Author(s):  
Ahmet Abaci ◽  
Erkan Yuce

In this paper, two new second-order voltage-mode universal filters are proposed. Both of the proposed filters use only two differential voltage current conveyors (DVCCs), four resistors and two grounded capacitors which are advantageous from integrated circuit technology point of view. They can simultaneously provide second-order low-pass, high-pass, band-pass, notch and all-pass responses. They offer orthogonal control of angular resonance frequency and quality factor. However, they have a single matching condition for only all-pass responses. A number of simulations based on SPICE program are accomplished in order to demonstrate the performance of both filters.


2017 ◽  
Vol 26 (07) ◽  
pp. 1750121 ◽  
Author(s):  
Thanat Nonthaputha ◽  
Montree Kumngern

This paper presents new programmable universal biquadratic filters using current conveyor transconductance amplifiers (CCTAs) by which both voltage- and current-mode filters can be obtained. The proposed filters use second-generation current conveyor (CCII) which is the first stage of CCTA to operate as current conveyor analog switch (CCAS) and this CCAS will be used to program the filtering functions such as low-pass, high-pass, band-pass, band-stop and all-pass filters. Unlike previous universal filters, the filtering functions of the proposed filters can be programmed using the bias currents of CCTAs without changing any input and output connections. The natural frequency and quality factor of all filtering functions can be controlled electronically and orthogonally using the bias currents of transconductance amplifiers. Also gain response of all transfer functions can be adjusted. The active and passive sensitivities of the filters are low. The proposed programmable filters have been simulated using 0.18[Formula: see text][Formula: see text]m CMOS process from TSMC. PSPICE simulation results are included to confirm workability of the proposed circuits.


2010 ◽  
Vol 19 (08) ◽  
pp. 1641-1650 ◽  
Author(s):  
FIRAT KAÇAR

A new tunable CMOS FDNR circuit is proposed. The circuit is based on the transcapacitive gyrator approach with both transcapacitive stages realized by MOS transistors configuration. This FDNR element lends itself well to the design of low-pass ladder filters and its use will result in a more efficient integrated circuit implementation than filters that simulate floating inductors utilizing resistive gyrators. The applications of FDNR to realize a current-mode fifth-order elliptic filter and current mode sixth-order elliptic band-pass filter are given. The proposed FDNR is simulated using CMOS TSMC 0.35 μm technology. Simulation results are given to confirm the theoretical analysis.


Author(s):  
Montree Kumngern

This paper presents a new current-mode universal filter with one-input three-output employing three translinear current conveyors and two grounded capacitors. The proposed filter provides low-pass, band-pass, high-pass current response with high output impedance output which can be directly connected for current-mode circuit. The band-pass and all-pass filters can also be obtained. The parameters wo and Q can be controlled separately and electronically by the bias currents of current conveyors. For realizing all filtering functions, no passive and active matching conditions are required. The active and passive sensitivities are low. The characteristic of the proposed circuit can be confirmed by SPICE simulations.


Author(s):  
Rashmika Rai ◽  
◽  
S Indu

The study presents a universal filter and Oscillator obtain by applying only single input. All the passive components used are grounded which is suitable for integrated circuit implementation. In the circuit by applying for single input simultaneously low pass, High Pass, Band Pass, All Pass, and Notch filter is obtained by using two blocks of Differential Difference current conveyor transconductance amplifier.


Sign in / Sign up

Export Citation Format

Share Document