Experimental Demonstration for PAPR Reduction in OFDM System Using Partial-OSLM Technique

2018 ◽  
Vol 27 (07) ◽  
pp. 1850106 ◽  
Author(s):  
M. I. Al-Rayif ◽  
H. Seleem ◽  
A. Ragheb ◽  
S. Alshebeili

Orthogonal frequency division multiplexing (OFDM) modulation is proposed in 4G wireless communication systems, and is under consideration for the next generation 5G systems. This is due to the higher spectral efficiency (SE) and the better immunity to channel distortions. One of the shortcomings in OFDM is its high peak-to-average power ratio (PAPR). Several schemes have been proposed to reduce the PAPR in OFDM systems. This includes clipping, coding, and pre/post-distortion schemes with or without side information. In this paper, we experimentally demonstrate one of the most promising method, to mitigate the effect of PAPR, entitled the partial orthogonal selective mapping (POSLM). The experimental results show a comparable performance with respect to the simulation results in terms of PAPR reduction, power spectral density (PSD), and bit error rate (BER) metrics.

Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 190 ◽  
Author(s):  
Brahim Bakkas ◽  
Reda Benkhouya ◽  
Idriss Chana ◽  
Hussain Ben-Azza

Orthogonal frequency division multiplexing (OFDM) is the key technology used in high-speed communication systems. One of the major drawbacks of OFDM systems is the high peak-to-average power ratio (PAPR) of the transmitted signal. The transmitted signal with a high PAPR requires a very large linear range of the Power Amplifier (PA) on the transmitter side. In this paper, we propose and study a new clipping method named Palm Clipping (Palm date leaf) based on hyperbolic cosine. To evaluate and analyze its performance in terms of the PAPR and Bit Error Rate (BER), we performed some computer simulations by varying the Clipping Ratio (CR) and modulation schemes. The obtained results show that it is possible to achieve a gain of between 7 and 9 dB in terms of PAPR reduction depending on the type of modulation. In addition, comparison with several techniques in terms of PAPR and BER shows that our method is a strong alternative that can be adopted as a PAPR reduction technique for OFDM-based communication systems.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hefdhallah Sakran ◽  
Omar Nasr ◽  
Mona Shokair

Cognitive radio (CR) is considered nowadays as a strong candidate solution for the spectrum scarcity problem. On standards level, many cognitive radio standards have chosen Non-Contiguous Orthogonal Frequency Division Multiplexing (NC-OFDM) as their modulation scheme. Similar to OFDM, NC-OFDM suffers from the problem of having a high Peak to Average Power Ratio (PAPR). If not solved, either the transmitted signal will be distorted, which will cause interference to primary (licensed) users, or the effeciency of the power amplifier will be seriously degraded. The effect of the PAPR problem in NC-OFDM based cognitive radio networks is worse than normal OFDM systems. In this paper, we propose enhanced techniques to reduce the PAPR in NC-OFDM systems. We start by showing that combining two standard PAPR reduction techniques (interleaver-based and selective mapping) results in a lower PAPR than using them individually. Then, an “adaptive number of interleavers” will be proposed that achieves the same performance of conventional interleaver-based PAPR reduction while reducing the CPU time by 41.3%. Finally, adaptive joint interleaver with selective mapping is presented, and we show that it gives the same performance as conventional interleaver-based technique, with reduction in CPU time by a factor of 50.1%.


2016 ◽  
Vol 78 (5-9) ◽  
Author(s):  
Ezmin Abdullah ◽  
Azlina Idris

Peak to Average Power Ratio (PAPR) has been known to be a common problem in Orthogonal Frequency Division Multiplexing (OFDM). The peak value of power signals has contributed to other problems, thus the implementation of OFDM system in many wireless applications has been growing slowly. There are many techniques being discussed to reduce the PAPR in OFDM systems where one of them is reduction through scrambling. In this paper, a technique that is based on scrambling method in order to reduce high PAPR in OFDM system is introduced. This proposed technique is called the Selective Codeword Shift (SCS). The key idea of SCS is to produce a scramble data sequence where the candidate with minimum PAPR will then be selected for transmission. This has shown an improvement in reducing PAPR as compared to original OFDM signals and the conventional Selective Mapping (SLM) technique with 29.5% improvement. This technique also has the advantage of lower computational complexity as compared to conventional SLM where no multiplication of the phase factor involved in the process and no explicit side information was needed to retrieve the transmitted data at the receiver.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1708
Author(s):  
Ahmad Gendia ◽  
Osamu Muta

Peak-to-average power ratio (PAPR) reduction in multiplexed signals in orthogonal frequency division multiplexing (OFDM) systems has been a long-standing critical issue. Clipping and filtering (CF) techniques offer good performance in terms of PAPR reduction at the expense of a relatively high computational cost that is inherent in the repeated application of fast Fourier transform (FFT) operations. The ever-increasing demand for low-latency operation calls for the development of low-complexity novel solutions to the PAPR problem. To address this issue while providing an enhanced PAPR reduction performance, we propose a synchronous neural network (NN)-based solution to achieve PAPR reduction performance exceeding the limits of conventional CF schemes with lower computational complexity. The proposed scheme trains a neural network module using hybrid collections of samples from multiple OFDM symbols to arrive at a signal mapping with desirable characteristics. The benchmark NN-based approach provides a comparable performance to conventional CF. However, it can underfit or overfit due to its asynchronous nature which leads to increased out-of-band (OoB) radiations, and deteriorating bit error rate (BER) performance for high-order modulations. Simulations’ results demonstrate the effectiveness of the proposed scheme in terms of the achieved cubic metric (CM), BER, and OoB emissions.


Author(s):  
Mohamed Mounir ◽  
Mohamed Bakry El Mashade

High data rate communication systems usually implement Orthogonal Frequency Division Multiplexing (OFDM) to face frequency selectivity. High Peak to Average Power Ratio (PAPR) is an OFDM disadvantage that causes Bit Error Rate (BER) degradation and out-of-band (OOB) radiation when OFDM signal pass through nonlinear Power Amplifier (PA). In order to overcome this problem larger Input Back-Off (IBO) is required. However, large IBO decreases the PA efficiency. PAPR reduction techniques are used to reduce the required IBO, so that PA efficiency is saved. Several PAPR reduction methods are introduced in literature, among them Tone Reservation based on Null Subcarriers (TRNS) is downward compatible version of Tone Reservation (TR) with small excess in the average power and low computational complexity compared to others. As will be shown, TRNS is the best practical one of the four downward compatible techniques. Performance of TRNS is controlled by three parameters; number of peak reduction tones (PRTs), predefined threshold (Amax), and number of iterations (Itr). In order to increase PAPR reduction gain, enhance BER performance, and reduce the required IBO to follow the given power spectral density (PSD), we have to choose the values of these parameters adequately. Results showed that, we have to reduce the threshold value to the average (i.e. Amax =0 dB). Also, we have to increase number of PRTs. However, we have to maintain the spectrum shape. Finally, we have to choose moderate number of iterations (e.g. Itr ≈50), as excessive increase in number of iterations is not useful, especially at high PAPR values.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lahcen Amhaimar ◽  
Saida Ahyoud ◽  
Ali Elyaakoubi ◽  
Abdelmoumen Kaabal ◽  
Kamal Attari ◽  
...  

The transceiver combination technology, of orthogonal frequency division multiplexing (OFDM) with multiple-input multiple-output (MIMO), provides a viable alternative to enhance the quality of service and simultaneously to achieve high spectral efficiency and data rate for wireless mobile communication systems. However, the high peak-to-average power ratio (PAPR) is the main concern that should be taken into consideration in the MIMO-OFDM system. Partial transmit sequences (PTSs) is a promising scheme and straightforward method, able to achieve an effective PAPR reduction performance, but it requires an exhaustive search to find the optimum phase factors, which causes high computational complexity increased with the number of subblocks. In this paper, a reduced computational complexity PTS scheme is proposed, based on a novel swarm intelligence algorithm, called fireworks algorithm (FWA). Simulation results confirmed the adequacy and the effectiveness of the proposed method which can effectively reduce the computation complexity while keeping good PAPR reduction. Moreover, it turns out from the results that the proposed PTS scheme-based FWA clearly outperforms the hottest and most important evolutionary algorithm in the literature like simulated annealing (SA), particle swarm optimization (PSO), and genetic algorithm (GA).


2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Anh-Tai Ho ◽  
Jean-François Helard ◽  
Youssef Nasser ◽  
Yves Louet

A novel peak-to-average power ratio (PAPR) reduction technique for orthogonal frequency division multiplexing (OFDM) systems is addressed. Instead of using dedicated pilots for PAPR reduction as with tone reservation (TR) method selected by the DVB-T2 standard, we propose to use existing pilots used for channel estimation. In this way, we avoid the use of reserved tone pilots and then improve the spectral efficiency of the system. In order to allow their recovery at the receiver, these pilots have to follow particular laws which permit their blind detection and avoid sending side information. In this work, we propose and investigate a multiplicative law operating in discrete frequency domain. The operation in discrete domain aims at reducing degradation due to detection and estimation error in continuous domain. Simulation results are performed using the new DVB-T2 standard parameters. Its performance is compared to the DVB-T2 PAPR gradient algorithm and to the second-order cone programming (SOCP) competitive technique proposed in the literature. We show that the proposed technique is efficient in terms of PAPR reduction value and of spectral efficiency while the channel estimation performance is maintained.


2019 ◽  
Vol 9 (5) ◽  
pp. 852 ◽  
Author(s):  
Lili Hao ◽  
Dongyi Wang ◽  
Yang Tao ◽  
Wenyong Cheng ◽  
Jing Li ◽  
...  

End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages in the analysis of unknown or complex channels make deep learning a valid tool to improve system performance. In this paper, we propose an autoencoder network combined with extended selected mapping methods (ESLM-AE) to reduce the PAPR for the DC-biased optical OFDM system and to minimize the bit error rate (BER). The constellation mapping/de-mapping of the transmitted symbols and the phase factor of each subcarrier are acquired and optimized adaptively by training the autoencoder with a combined loss function. In the loss function, both the PAPR and BER performance are taken into account. The simulation results show that a significant PAPR reduction of more than 10 dB has been achieved by using the ESLM-AE scheme in terms of the complementary cumulative distribution function. Furthermore, the proposed scheme exhibits better BER performance compared to the standard PAPR reduction methods.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Tian-Ming Ma ◽  
Yu-Song Shi ◽  
Ying-Guan Wang

Orthogonal frequency-division multiplexing (OFDM) is an attractive transmission technique for high-bit-rate communication systems. One major drawback of OFDM is the high peak-to-average power ratio (PAPR) of the transmitter's output signal. A novel selected mapping (SLM) scheme is proposed, which employs matrix transformation, cyclically shifting, and linear combining algorithm to generate new candidates. The novel scheme requires only one IFFT and gets more candidate transmission signals throughout the entire process. The complexity analysis and simulation results show that this algorithm can dramatically reduce computational complexity comparing with the conventional SLM scheme as in Hill et al., 2000; Yang et al., 2009; Wang and Ouyang, 2005; Li et al., 2010; and Heo et al., 2007 under the similar PAPR reduction performance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Balram Damodhar Timande ◽  
◽  
Dr. Manoj Kumar Nigam ◽  

The ‘Orthogonal frequency division multiplexing (OFDM)’ is a well-accepted and effective technology employed today and in future wireless communication systems. The combinations of OFDM and ‘multiple-input multiple-output (MIMO’) offer high quality of services and better throughput. The multicarrier OFDM system experiences a high ‘peak-to-average power ratio (PAPR’), which is the major issue in the OFDM scheme and must be truncated to achieve trustworthy communication. Due to high PAPR in a signal to be transmitted, the power amplifier in the transmitter section enters into saturation region and amplifies the signal nonlinearly, resulting in loss of orthogonality and ultimately in ‘inter-carrier interference (ICI)’. In this article, the 'iterative clipping and filtering (ICF)' method is proposed to minimize the PAPR in the OFDM system. The simulation is carried out using MATLAB (version 2014b). The result of the proposed ICF method and the ‘selective mapping (SLM)’ scheme is analyzed and compared. From the analysis, it is shown that the proposed ICF technique is more suitable for minimizing the PAPR effectively without affecting ‘bit error rates (BER)’ much and the simplicity of the system. The simulation result of the proposed ICF scheme using ‘Quadrature Phase Shift Keying (QPSK)’, FFT size of 128, and clipping and filtering level up to 6 shows that the proposed ICF scheme for clipping level of 6 reduces PAPR to 5dB. Also, the BER is minimized at the level of 3×10−5 at 12 dB SNR.


Sign in / Sign up

Export Citation Format

Share Document