A Wide Frequency Range Low Jitter Integer PLL with Switch and Inverter Based CP in 0.18 μm CMOS Technology

2019 ◽  
Vol 29 (09) ◽  
pp. 2050142
Author(s):  
Jagdeep Kaur Sahani ◽  
Anil Singh ◽  
Alpana Agarwal

This paper aims at designing a digital approach based low jitter, smaller area and wide frequency range phase locked loop (PLL) to reduce the design efforts and power which can be used in System-on-chip applications for operating frequency in the range of 0.025–1.6[Formula: see text]GHz. The low power, scalable and compact charge pump is proposed which reduces the overall power consumption and area of proposed PLL. A frequency phase detector (PFD) based on inverters and tri-state buffers have been proposed for the PLL. It is fast which improves the locking time of PLL. Also, pseudo-differential voltage controlled oscillator (VCO) is designed with CMOS inverter gates. The inverters are used as phase interpolator to maintain the phase difference of 180∘ between two outputs of VCO. Also, the inverters are used as variable capacitors to vary the frequency of proposed VCO with control voltage. It demonstrates the good phase noise performance enabling proposed PLL to have low jitter and wide frequency range. All the major blocks like PFD, charge pump and VCO are designed using digital gate methodology thus saving area and power and also reduce design efforts. Also, these digitally designed blocks enable the PLL to have low jitter small area and wide range. The proposed PLL is designed in a 0.18-[Formula: see text][Formula: see text]m CMOS technology with supply voltage of 1.8[Formula: see text]V. The output clocks with cycle-to-cycle jitter of 2.13[Formula: see text]ps at 1.6[Formula: see text]GHz. The phase noise of VCO is [Formula: see text]137[Formula: see text]dBc/Hz at an offset of 100[Formula: see text]MHz and total power consumed by the proposed PLL is 2.63[Formula: see text]mW at 1.6[Formula: see text]GHz.

2021 ◽  
Author(s):  
Nima Haghighi

This thesis proposes an Integer-N frequency synthesizer in TSMC 0.18µm technology. The design is aimed for MICS (Medical Implantable Communication Services) devices operating at 402-406 MHz. A low phase noise, wide frequency range Quadrature Voltage Controlled Oscillator (QVCO) has been designed and simulated. The simulated phase noise @ 160 KHz offset is -100.3 dBc/Hz with the power consumption of 0.9 mW. This design addresses the small size, low phase noise and low power requirements for the Implantable devices. A wide frequency range Source Coupled Logic (SCL)32/33 prescaler divider has been designed. The program counter and Swallow counter have been implemented in Verilog-A which allow a division ratio of 2690 from the output of the QVCO. A phase frequency detector based on a modified TSPC D-Flip Flop is designed, which leads to a faster response time. The phase frequency detector, the charge pump, and the loop filter would consume 0.5 mW power. The total power consumption of the synthesizer is at 4.6 mW with 2% steady state settlement time of 160 μs.


2021 ◽  
Author(s):  
Nima Haghighi

This thesis proposes an Integer-N frequency synthesizer in TSMC 0.18µm technology. The design is aimed for MICS (Medical Implantable Communication Services) devices operating at 402-406 MHz. A low phase noise, wide frequency range Quadrature Voltage Controlled Oscillator (QVCO) has been designed and simulated. The simulated phase noise @ 160 KHz offset is -100.3 dBc/Hz with the power consumption of 0.9 mW. This design addresses the small size, low phase noise and low power requirements for the Implantable devices. A wide frequency range Source Coupled Logic (SCL)32/33 prescaler divider has been designed. The program counter and Swallow counter have been implemented in Verilog-A which allow a division ratio of 2690 from the output of the QVCO. A phase frequency detector based on a modified TSPC D-Flip Flop is designed, which leads to a faster response time. The phase frequency detector, the charge pump, and the loop filter would consume 0.5 mW power. The total power consumption of the synthesizer is at 4.6 mW with 2% steady state settlement time of 160 μs.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1290
Author(s):  
Jeong-Yun Lee ◽  
Gwang Sub Kim ◽  
Goo-Han Ko ◽  
Kwang-Il Oh ◽  
Jae Gyeong Park ◽  
...  

This paper proposes a new structure of 24-GHz class-C voltage-controlled oscillator (VCO) using an auto-adaptive bias technique. The VCO in this paper uses a digitally controlled circuit to eliminate the possibility of start-up failure that a class-C structure can have and has low phase noise and a wide frequency range. To expand the frequency tuning range, a 3-bit cap-bank is used and a triple-coupled transformer is used as the core inductor. The proposed class-C VCO implements a 65-nm RF CMOS process. It has a phase noise performance of −105 dBc/Hz or less at 1-MHz offset frequency and the output frequency range is from 22.8 GHz to 27.3 GHz, which consumes 8.3–10.6 mW of power. The figure-of-merit with tuning range (FoMT) of this design reached 191.1 dBc/Hz.


2014 ◽  
Vol 24 (01) ◽  
pp. 1550001 ◽  
Author(s):  
Sarang Kazeminia ◽  
Sobhan Sofi Mowloodi ◽  
Khayrollah Hadidi

In this paper, a low jitter 16-phases delay locked loop (DLL) is proposed based on a simple and sensitive phase detector (PD). Dead-zone of the proposed PD is improved in compare to the conventional structures where the pulse generator postpones PD response and reduces the sensitivity. Also, the conventional structure of charge pumps is modified to inject small charge throughout the continuous outputs of PD. Smaller bias current is provided in charge pump via subtracting tail currents of intentionally mismatched differential pairs. Duty cycle of output differential phases is adjusted to around 50% using common mode setting strategy on delay elements. Simulation results confirm that DLL loop can provide 16-phases in frequency range of 80 to 410 MHz, consuming total power of 3.5 and 5.6 mW, respectively. The dead-zone of PD is also reduced from 80 to 14 ps when the pulse generator section is eliminated. Also, RMS jitter of about 45 and 1.76 ps are obtained at 80 and 410 MHz, respectively, when the supply voltage is subject to around 40 mV peak-to-peak noise disturbances. The proposed DLL can be implemented in less than 0.05 mm2 active area in a 0.18 μm CMOS technology.


2019 ◽  
Vol 29 (08) ◽  
pp. 2050130 ◽  
Author(s):  
Jagdeep Kaur Sahani ◽  
Anil Singh ◽  
Alpana Agarwal

A fast phase frequency detector (PFD) and low gain low phase noise voltage-controlled oscillator (VCO)-based phase-locked loop (PLL) design are presented in this paper. PLL works in the frequency range of 0.025–1.6[Formula: see text]GHz, targeting various SoC applications. The proposed PFD, designed using CMOS dynamic logic, is fast and improves the locking time, dead zone and blind zone in the PLL. The standard CMOS inverter gate-based pseudo differential VCO is used in the PLL. Also, CMOS inverter is used as variable capacitor to tune the frequency of VCO with control voltage. The proposed PLL is designed in a 180[Formula: see text]nm CMOS process with supply voltage of 1.8[Formula: see text]V. The phase noise of VCO is [Formula: see text][Formula: see text]dBc/Hz at an offset frequency of 100[Formula: see text]MHz. The reference clock of 25[Formula: see text]MHz synthesizes the output clock of 1.6[Formula: see text]GHz with rms jitter of 0.642[Formula: see text]ps.


2019 ◽  
Vol 29 (08) ◽  
pp. 2050128
Author(s):  
Zied Sakka ◽  
Nadia Gargouri ◽  
Mounir Samet

This paper presents a low power temperature compensated CMOS ring oscillator for biomedical applications across a wide temperature range. The proposed circuit deploys an IPTAT (inversely proportional to absolute temperature) bias current by generating an adaptive control voltage in each stage of the oscillator to compensate the overall oscillator’s temperature coefficient (TC). Simulations using TSMC 0.18[Formula: see text][Formula: see text]m CMOS technology show that this configuration can achieve a frequency variation less than 0.25%, leading to an average frequency drift of 20.83[Formula: see text]ppm/∘C. Monte Carlo simulations have also been performed and demonstrate a 3[Formula: see text] deviation of about 2.15%. The power dissipated by the proposed circuit is only 8.48[Formula: see text]mW at 25∘C.


Sign in / Sign up

Export Citation Format

Share Document