Functional Verification of Dynamic Partial Reconfiguration for Software-Defined Radio

Author(s):  
Islam Ahmed ◽  
Ahmed Nader Mohieldin ◽  
Hassan Mostafa

Dynamic Partial Reconfiguration (DPR) on Field Programmable Gate Arrays (FPGAs) allows reconfiguration of some of the logic at runtime while the rest of the logic keeps operating. This feature allows the designers to build complex systems such as Software-Defined Radio (SDR) in a reasonable area. New issues can arise due to usage of DPR technique such as guaranteeing proper connections for the ports of the Reconfigurable Modules (RMs) which share the same Reconfigurable Region (RR) on the FPGA, waiting for running computations on a module before reconfiguring it, isolation of the reconfigurable modules during the reconfiguration process, and initialization of the reconfigurable module after the reconfiguration process is done. Also, the Clock Domain Crossing (CDC) verification of the dynamically reconfigurable systems is a complicated task due to the need to verify all the modes of the designs, and the lack of Computer Aided Design (CAD) tools support for DRS designs. This paper summarizes our previous work to address these verification challenges for DPR. The approaches are demonstrated on a SDR system to show the effectiveness of applying these approaches in the design cycle.

2018 ◽  
Vol 7 (2.16) ◽  
pp. 57
Author(s):  
G Prasad Acharya ◽  
M Asha Rani

The increased demand for processor-level parallelism has many-folded the challenges for SoC designers to design, simulate and verify/validate today’s Multi-core System-On-Chip (SoC) due to the increased system complexity. There is also a need to reduce the design cycle time to produce a complex multi-core SOC system thereby the product can be brought into the market within an affordable time. The Computer-Aided Design (CAD) tools and Field Programmable Gate Arrays (FPGAs) provide a solution for rapidly prototyping and validating the system. This paper presents an implementation of multi-core SoC consisting of 6 Xilinx Micro-Blaze soft-core processors integrated to the Zynq Processing System (PS) using IP Integrator and these cores will be communicated through AXI bus. The functionality of the system is verified using Micro-Blaze system debugger. The hardware framework for the implemented system is implemented and verified on FPGA.  


Author(s):  
Naim Harb ◽  
Smail Niar ◽  
Mazen A. R. Saghir

Embedded system designers are increasingly relying on Field Programmable Gate Arrays (FPGAs) as target design platforms. Today's FPGAs provide high levels of logic density and rich sets of embedded hardware components. They are also inherently flexible and can be easily and quickly modified to meet changing applications or system requirements. On the other hand, FPGAs are generally slower and consume more power than Application-Specific Integrated Circuits (ASICs). However, advances in FPGA architectures, such as Dynamic Partial Reconfiguration (DPR), are helping bridge this gap. DPR enables a portion of an FPGA device to be reconfigured while the device is still operating. This chapter explores the advantage of using the DPR feature in an automotive system. The authors implement a Driver Assistant System (DAS) based on a Multiple Target Tracking (MTT) algorithm as the automotive base system. They show how the DAS architecture can be adjusted dynamically to different scenario situations to provide interesting functionalities to the driver.


This paper provide a summary of low-power technique for field-programmable gate arrays (FPDs). It cover system level propose technique as well as device level propose methods that have besieged present trade devices. In addition to describe present investigate happening circuit level as well as architecture-level create technique. Current studies on power model as well as on low-power computer-aided design (CAD) are also information. At last, it proposes that would allow the use of Field Programmable Device (FPD) equipment in applications where power and energy consumption is critical, such as mobile devices.


2022 ◽  
Vol 15 (3) ◽  
pp. 1-29
Author(s):  
Eli Cahill ◽  
Brad Hutchings ◽  
Jeffrey Goeders

Field-Programmable Gate Arrays (FPGAs) are widely used for custom hardware implementations, including in many security-sensitive industries, such as defense, communications, transportation, medical, and more. Compiling source hardware descriptions to FPGA bitstreams requires the use of complex computer-aided design (CAD) tools. These tools are typically proprietary and closed-source, and it is not possible to easily determine that the produced bitstream is equivalent to the source design. In this work, we present various FPGA design flows that leverage pre-synthesizing or pre-implementing parts of the design, combined with open-source synthesis tools, bitstream-to-netlist tools, and commercial equivalence-checking tools, to verify that a produced hardware design is equivalent to the designer’s source design. We evaluate these different design flows on several benchmark circuits and demonstrate that they are effective at detecting malicious modifications made to the design during compilation. We compare our proposed design flows with baseline commercial design flows and measure the overheads to area and runtime.


Author(s):  
Wei-Wen Lin ◽  
Jih-Sheng Shen ◽  
Pao-Ann Hsiung

With the progress of technology, more and more intellectual properties (IPs) can be integrated into one single chip. The performance bottleneck has shifted from the computation in individual IPs to the communication among IPs. A Network-on-Chip (NoC) was proposed to provide high scalability and parallel communication. An ASIC-implemented NoC lacks flexibility and has a high non-recurring engineering (NRE) cost. As an alternative, we can implement an NoC in a Field Programmable Gate Arrays (FPGA). In addition, FPGA devices can support dynamic partial reconfiguration such that the hardware circuits can be configured into an FPGA at run time when necessary, without interfering hardware circuits that are already running. Such an FPGA-based NoC, namely reconfigurable NoC (RNoC), is more flexible and the NRE cost of FPGA-based NoC is also much lower than that of an ASIC-based NoC. Because of dynamic partial reconfiguration, there are several issues in the RNoC design. We focus on how communication between hardware and software can be made efficient for RNoC. We implement three communication architectures for RNoC namely single output FIFO-based architecture, multiple output FIFO-based architecture, and shared memory-based architecture. The average communication memory overhead is less on the single output FIFO-based architecture and the shared memory-based architecture than on the multiple output FIFO-based architecture when the lifetime interval is smaller than 0.5. In the performance analysis, some real applications are applied. Real application examples show that performance of the multiple output FIFO-based architecture is more efficient by as much as 1.789 times than the performance of the single output FIFO-based architecture. The performance of the shared memory-based architecture is more efficient by as much as 1.748 times than the performance of the single output FIFO-based architecture.


Computers ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 125
Author(s):  
Vyacheslav Kharchenko ◽  
Oleg Illiashenko ◽  
Vladimir Sklyar

This paper describes a proposed method and technology of safety assessment of projects based on field programmable gate arrays (FPGA). Safety assessment is based on special invariants, e.g., properties which remain unchanged when a specified transformation is applied. A classification and examples of FPGA project invariants are provided. In the paper, two types of invariants are described. The first type of invariants used for such assessment are those which are versatile since they reflect the unchanged properties of FPGA projects, hardware description languages, etc. These invariants can be replenished as experience gained in project implementation accumulates. The second type of invariants is formed based on an analysis of the specifics of a particular FPGA project and reflects the features of the tasks to be solved, the algorithms that are implemented, the hardware FPGA chips used, and the computer-aided design tools, etc. The paper contains a description of the overall conception and particular stages of FPGA projects invariant-based safety assessment. As examples for solving some tasks (using of invariants and defect injections), the paper contains several algorithms written in the VHSIC hardware description language (VHDL). The paper summarizes the results obtained during several years of practical and theoretical research. It can be of practical use for engineers and researchers in the field of quality, reliability, and security of embedded systems, software and information management systems for critical and business applications.


Sign in / Sign up

Export Citation Format

Share Document