Infrastructure-enhanced Multi-target Tracking Using a Multiple-model PHD Filter

Author(s):  
Zhen Tian ◽  
Ming Cen ◽  
Yinguo Li

Environment perception is crucial for the development of autonomous driving and advanced driver assistance systems. The cooperative perception using the infrastructure sensors can significantly expand the field of view of on-board sensors and improve the accuracy of target tracking. In this paper, we propose a hybrid vehicular perception system that incorporates both received feature-level information from infrastructure sensors and track-level data from the multi-access edge computing server (MEC-Server). An infrastructure-enhanced multiple-model probability hypothesis density is proposed to handle the feature-level data from heterogeneous infrastructure sensors. The problem of kinematic state estimation is improved with the prior information of the road environment. Furthermore, a generic communication interface between the infrastructure sensor and MEC-Server is designed, which allows the object data to have the same notion of locality through the use of a generic object state model. Simulation results show that the presented algorithm provides higher accuracy and reliability after considering the prior information of the road environment.

2021 ◽  
Vol 10 (3) ◽  
pp. 42
Author(s):  
Mohammed Al-Nuaimi ◽  
Sapto Wibowo ◽  
Hongyang Qu ◽  
Jonathan Aitken ◽  
Sandor Veres

The evolution of driving technology has recently progressed from active safety features and ADAS systems to fully sensor-guided autonomous driving. Bringing such a vehicle to market requires not only simulation and testing but formal verification to account for all possible traffic scenarios. A new verification approach, which combines the use of two well-known model checkers: model checker for multi-agent systems (MCMAS) and probabilistic model checker (PRISM), is presented for this purpose. The overall structure of our autonomous vehicle (AV) system consists of: (1) A perception system of sensors that feeds data into (2) a rational agent (RA) based on a belief–desire–intention (BDI) architecture, which uses a model of the environment and is connected to the RA for verification of decision-making, and (3) a feedback control systems for following a self-planned path. MCMAS is used to check the consistency and stability of the BDI agent logic during design-time. PRISM is used to provide the RA with the probability of success while it decides to take action during run-time operation. This allows the RA to select movements of the highest probability of success from several generated alternatives. This framework has been tested on a new AV software platform built using the robot operating system (ROS) and virtual reality (VR) Gazebo Simulator. It also includes a parking lot scenario to test the feasibility of this approach in a realistic environment. A practical implementation of the AV system was also carried out on the experimental testbed.


2021 ◽  
Vol 11 (8) ◽  
pp. 3531
Author(s):  
Hesham M. Eraqi ◽  
Karim Soliman ◽  
Dalia Said ◽  
Omar R. Elezaby ◽  
Mohamed N. Moustafa ◽  
...  

Extensive research efforts have been devoted to identify and improve roadway features that impact safety. Maintaining roadway safety features relies on costly manual operations of regular road surveying and data analysis. This paper introduces an automatic roadway safety features detection approach, which harnesses the potential of artificial intelligence (AI) computer vision to make the process more efficient and less costly. Given a front-facing camera and a global positioning system (GPS) sensor, the proposed system automatically evaluates ten roadway safety features. The system is composed of an oriented (or rotated) object detection model, which solves an orientation encoding discontinuity problem to improve detection accuracy, and a rule-based roadway safety evaluation module. To train and validate the proposed model, a fully-annotated dataset for roadway safety features extraction was collected covering 473 km of roads. The proposed method baseline results are found encouraging when compared to the state-of-the-art models. Different oriented object detection strategies are presented and discussed, and the developed model resulted in improving the mean average precision (mAP) by 16.9% when compared with the literature. The roadway safety feature average prediction accuracy is 84.39% and ranges between 91.11% and 63.12%. The introduced model can pervasively enable/disable autonomous driving (AD) based on safety features of the road; and empower connected vehicles (CV) to send and receive estimated safety features, alerting drivers about black spots or relatively less-safe segments or roads.


2021 ◽  
Author(s):  
◽  
Praveen Babu Choppala

<p>This thesis addresses several challenges in Bayesian target tracking, particularly for array signal processing applications, and for multiple targets.  The optimal method for multiple target tracking is the Bayes’ joint filter that operates by hypothesising all the targets collectively using a joint state. As a consequence, the computational complexity of the filter increases rapidly with the number of targets. The probability hypothesis density and the multi-Bernoulli filters that overcome this complexity do not possess a suitable framework to operate directly on phased sensor array data. Instead, such data is converted into beamformer images in which close targets may not be effectively resolved and much information is lost. This thesis develops a multiple signal classification (MUSIC) based multi-target particle filter that improves upon the filters mentioned above. A MUSIC based multi-Bernoulli particle filter is also developed, that operates more directly on array data.  The above mentioned particle filters require a resampling step which impedes information accumulation over successive observations, and affects the detection of very covert targets. This thesis develops soft resampling and soft systematic resampling to overcome this problem without affecting the accuracy of approximation. Additionally, modified Kolmogorov-Smirnov testing is proposed, to numerically evaluate the accuracy of the particle filter approximation.</p>


2021 ◽  
Vol 13 (22) ◽  
pp. 4525
Author(s):  
Junjie Zhang ◽  
Kourosh Khoshelham ◽  
Amir Khodabandeh

Accurate and seamless vehicle positioning is fundamental for autonomous driving tasks in urban environments, requiring the provision of high-end measuring devices. Light Detection and Ranging (lidar) sensors, together with Global Navigation Satellite Systems (GNSS) receivers, are therefore commonly found onboard modern vehicles. In this paper, we propose an integration of lidar and GNSS code measurements at the observation level via a mixed measurement model. An Extended Kalman-Filter (EKF) is implemented to capture the dynamic of the vehicle movement, and thus, to incorporate the vehicle velocity parameters into the measurement model. The lidar positioning component is realized using point cloud registration through a deep neural network, which is aided by a high definition (HD) map comprising accurately georeferenced scans of the road environments. Experiments conducted in a densely built-up environment show that, by exploiting the abundant measurements of GNSS and high accuracy of lidar, the proposed vehicle positioning approach can maintain centimeter-to meter-level accuracy for the entirety of the driving duration in urban canyons.


2021 ◽  
Vol 268 ◽  
pp. 01035
Author(s):  
Guogang Qian ◽  
Tieqiang Fu ◽  
Long Sun

Under the trend of automobile electrification, network connection, and intelligence, EU and USA have carried out fuel-saving research and initiatives on ADAS and CAV. The eCoMove project has aimed at economically optimal driving control and traffic management; MAVEN discusses the technical path of GLOSA (Green Light Optimal Speed Advisory) and ecological auto-driving EAD (Eco-Autonomous Driving) by smoothing the vehicle speed. The American NEXTCAR project contains multiple projects. When supplemented with DSF (Dynamic Skip Fire) and 48V technology, the road test led by Ohio State University resulted in a 15% fuel saving rate. Platoon and optimizing intersection signal lights can offer vehicles a more fuel-efficient condition; slope energy utilization, HEV SOC active management, cold storage evaporator, coasting, 48V and mDSF (miller cycle Dynamic Skip Fire) fuel-saving potential has been fully utilized.


Sign in / Sign up

Export Citation Format

Share Document