SYMMETRIC LARGE-SCALE VELOCITY FIELDS IN TWO-DIMENSIONAL THERMAL CONVECTION

1994 ◽  
Vol 04 (05) ◽  
pp. 1369-1374 ◽  
Author(s):  
J. PRAT ◽  
I. MERCADER ◽  
J.M. MASSAGUER

Recent experiments on thermal convection in finite containers [Krishnamurti & Howard, 1981; Howard & Krishnamurti, 1986] show the presence of flows spanning the largest dimension of the container. Numerical simulations of 2D thermal convection showing large-scale flows of this kind have been presented elsewhere [Prat et al., 1993a, 1993b]. In every known example the large scale velocity field has been found to display a vertical profile either antisymmetric or showing rather small departures from antisymmetry. In contrast, theoretical group arguments support the existence of symmetric velocity profiles. In the present paper it will be shown that large-scale velocity fields with vertically symmetric velocity profile do exist. In spite of these flows not being dominant in the range of parameters explored, their geometry and dynamics will be discussed on the basis of a linear stability analysis.

1992 ◽  
Vol 35 (4) ◽  
pp. 484-491
Author(s):  
Stephan Foldes

AbstractWe consider the directed graph representing the obstruction relation between objects moving along the streamlines of a two-dimensional velocity field. A collection of objects is sequentially separable if and only if the corresponding graph has no directed cycles. A sufficient condition for this is the permeability of closed Jordan curves.


2017 ◽  
Vol 63 (240) ◽  
pp. 629-636 ◽  
Author(s):  
DENIS VOYTENKO ◽  
TIMOTHY H. DIXON ◽  
DAVID M. HOLLAND ◽  
RYAN CASSOTTO ◽  
IAN M. HOWAT ◽  
...  

ABSTRACTOutlet glaciers undergo rapid spatial and temporal changes in flow velocity during calving events. Observing such changes requires both high temporal and high spatial resolution methods, something now possible with terrestrial radar interferometry. While a single such radar provides line-of-sight velocity, two radars define both components of the horizontal flow field. To assess the feasibility of obtaining the two-dimensional (2-D) flow field, we deployed two terrestrial radar interferometers at Jakobshavn Isbrae, a major outlet glacier on Greenland's west coast, in the summer of 2012. Here, we develop and demonstrate a method to combine the line-of-sight velocity data from two synchronized radars to produce a 2-D velocity field from a single (3 min) interferogram. Results are compared with the more traditional feature-tracking data obtained from the same radar, averaged over a longer period. We demonstrate the potential and limitations of this new dual-radar approach for obtaining high spatial and temporal resolution 2-D velocity fields at outlet glaciers.


2011 ◽  
Vol 676 ◽  
pp. 110-144 ◽  
Author(s):  
P. BOHORQUEZ ◽  
E. SANMIGUEL-ROJAS ◽  
A. SEVILLA ◽  
J. I. JIMÉNEZ-GONZÁLEZ ◽  
C. MARTÍNEZ-BAZÁN

We investigate the stability properties and flow regimes of laminar wakes behind slender cylindrical bodies, of diameter D and length L, with a blunt trailing edge at zero angle of attack, combining experiments, direct numerical simulations and local/global linear stability analyses. It has been found that the flow field is steady and axisymmetric for Reynolds numbers below a critical value, Recs (L/D), which depends on the length-to-diameter ratio of the body, L/D. However, in the range of Reynolds numbers Recs(L/D) < Re < Reco(L/D), although the flow is still steady, it is no longer axisymmetric but exhibits planar symmetry. Finally, for Re > Reco, the flow becomes unsteady due to a second oscillatory bifurcation which preserves the reflectional symmetry. In addition, as the Reynolds number increases, we report a new flow regime, characterized by the presence of a secondary, low frequency oscillation while keeping the reflectional symmetry. The results reported indicate that a global linear stability analysis is adequate to predict the first bifurcation, thereby providing values of Recs nearly identical to those given by the corresponding numerical simulations. On the other hand, experiments and direct numerical simulations give similar values of Reco for the second, oscillatory bifurcation, which are however overestimated by the linear stability analysis due to the use of an axisymmetric base flow. It is also shown that both bifurcations can be stabilized by injecting a certain amount of fluid through the base of the body, quantified here as the bleed-to-free-stream velocity ratio, Cb = Wb/W∞.


2019 ◽  
Vol 9 (22) ◽  
pp. 4840
Author(s):  
Yue Chen

This paper starts with a generalized Burton, Cabrera and Frank (BCF) model by considering the energetic contribution of the adjacent terraces to the step chemical potential. We use the linear stability analysis of the quasistatic free-boundary problem for a two-dimensional step separated by broad terraces to study the step-meandering instabilities. The results show that the equilibrium adatom coverage has influence on the morphological instabilities.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


2012 ◽  
Vol 170-173 ◽  
pp. 2478-2483
Author(s):  
Yan Long ◽  
Ke Liu ◽  
Shi Ping Jin ◽  
Yan Fu

Method of CFD was adopted to carry out two-dimensional numerical simulations for internal natural ventilation process of a standard triple-span workshop in iron and steel enterprises with3 different layouts of heat resources. Flow states and relevant parameters of air-fluid in the workshop were obtained to come up with theoretical basis for design, optimization and process layout of natural ventilation in workshops.


Horvath, Petrov, Scott and Showalter (1993) have shown that isothermal reaction-diffusion fronts with cubic autocalysis are linearly unstable to two-dimensional disturbances if the ratio, δ , of the diffusion coefficient of the reactant to that of the autocatalyst, is sufficiently large. However, they were only able to obtain an analytic expression for the growth rate by assuming an infinitely thin reaction zone, which is a poor approximation for cubic autocatalysis. We have carried out a linear stability analysis of such fronts with a finite reaction rate, and find that the critical δ for instability is unchanged, but the range of unstable wavenumbers is larger and increases rather than decreases with δ .


1994 ◽  
Vol 04 (05) ◽  
pp. 1147-1154 ◽  
Author(s):  
ALEXANDER NEPOMNYASHCHY

Stationary square patterns are typical in several instability problems. Near the instability threshold, the evolution of long-wave disturbances can be described by a system of amplitude equations resembling the Newell-Whitehead-Segel equations. These equations are used for the linear stability analysis and the investigation of the defects.


Sign in / Sign up

Export Citation Format

Share Document