Chaotic Motion of a Nonhomogeneous Torsional Pendulum

1997 ◽  
Vol 07 (03) ◽  
pp. 733-740 ◽  
Author(s):  
Jiin-Po Yeh

In this paper, the nonlinear oscillations of a nonhomogeneous torsional pendulum are investigated. Chaotic motions are shown to exist in both damped systems with two-well potential and undamped systems with one-well or two-well potential. Autocorrelations of the Poincaré mappings of the motion are presented and shown to be another useful tool to judge whether the system is chaotic. The total energy of the torsional pendulum is explored as well and it is conjectured that the irregularity of the total energy is probably one of the important factors which cause chaos. Lyapunov exponents are used as an indication of chaos in this paper. For systems with two-well potential, the phase-plane trajectories are found to stay in one well if the motion is regular, but jump from one well to another if the motion is chaotic. Making the initial conditions near the local minimum of the two-well potential is proved to be successful in preventing chaos from happening in the undamped systems.

2016 ◽  
Vol 823 ◽  
pp. 85-90
Author(s):  
Nicolae Dumitru ◽  
Dan B. Marghitu ◽  
Nicolae Craciunoiu

In this paper a pumping systems for deep extraction is simulated using SolidWorks and ADAMS. The elastic displacement of a point on the flexible moving cable is analyzed. The dynamics of the system is characterized with phase plane, Poincaré maps, and Lyapunov exponents. The Lyapunovexponents represent the dynamic stability of the system. The largest Lyapunov exponents for three different angular velocity show the chaotic motion of the system


Author(s):  
Jang-Der Jeng ◽  
Yuan Kang ◽  
Yeon-Pun Chang ◽  
Shyh-Shyong Shyr

The Duffing oscillator is well-known models of nonlinear system, with applications in many fields of applied sciences and engineering. In this paper, a response integration algorithm is proposed to analyze high-order harmonic and chaotic motions in this oscillator for modeling rotor excitations. This method numerically integrates the distance between state trajectory and the origin in the phase plane during a specific period and predicted intervals with excitation periods. It provides a quantitative characterization of system responses and can replace the role of the traditional stroboscopic technique (Poincare´ section method) to observe bifurcations and chaos of the nonlinear oscillators. Due to the signal response contamination of system, thus it is difficult to identify the high-order responses of the subharmonic motion because of the sampling points on Poincare´ map too near each other. Even the system responses will be made misjudgments. Combining the capability of precisely identifying period and constructing bifurcation diagrams, the advantages of the proposed response integration method are shown by case studies. Applying this method, the effects of the change in the stiffness and the damping coefficients on the vibration features of a Duffing oscillator are investigated in this paper. From simulation results, it is concluded that the stiffness and damping of the system can effectively suppress chaotic vibration and reduce vibration amplitude.


2011 ◽  
Vol 18 (1-2) ◽  
pp. 365-375 ◽  
Author(s):  
Qingkai Han ◽  
Xueyan Zhao ◽  
Xingxiu Li ◽  
Bangchun Wen

In this paper, we investigate the joint viscous friction effects on the motions of a two-bar linkage under controlling of OPCL. The dynamical model of the two-bar linkage with an OPCL controller is firstly set up with considering the two joints' viscous frictions. Thereafter, the motion bifurcations of the two-bar linkage along the values of joint viscous frictions are obtained using shooting method. Then, single-periodic, multiple-periodic, quasi-periodic and chaotic motions of link rotating angles are simulated with given different viscous friction values, and they are illustrated in time domain waveforms, phase space portraits, amplitude spectra and Poincare mapping graphs, respectively. Additionally, for the chaotic case, Lyapunov exponents and hypothesis possibilities of the two joint motions are also estimated.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Shih-Yu Li ◽  
Cheng-Hsiung Yang ◽  
Li-Wei Ko ◽  
Chin-Teng Lin ◽  
Zheng-Ming Ge

We expose the chaotic attractors of time-reversed nonlinear system, further implement its behavior on electronic circuit, and apply the pragmatical asymptotically stability theory to strictly prove that the adaptive synchronization of given master and slave systems with uncertain parameters can be achieved. In this paper, the variety chaotic motions of time-reversed Lorentz system are investigated through Lyapunov exponents, phase portraits, and bifurcation diagrams. For further applying the complex signal in secure communication and file encryption, we construct the circuit to show the similar chaotic signal of time-reversed Lorentz system. In addition, pragmatical asymptotically stability theorem and an assumption of equal probability for ergodic initial conditions (Ge et al., 1999, Ge and Yu, 2000, and Matsushima, 1972) are proposed to strictly prove that adaptive control can be accomplished successfully. The current scheme of adaptive control—by traditional Lyapunov stability theorem and Barbalat lemma, which are used to prove the error vector—approaches zero, as time approaches infinity. However, the core question—why the estimated or given parameters also approach to the uncertain parameters—remains without answer. By the new stability theory, those estimated parameters can be proved approaching the uncertain values strictly, and the simulation results are shown in this paper.


2003 ◽  
Vol 10 (1) ◽  
pp. 37-50 ◽  
Author(s):  
L.F.P. Franca ◽  
M.A. Savi

This contribution presents an investigation on noise sensitivity of some of the most disseminated techniques employed to estimate Lyapunov exponents from time series. Since noise contamination is unavoidable in cases of data acquisition, it is important to recognize techniques that could be employed for a correct identification of chaos. State space reconstruction and the determination of Lyapunov exponents are carried out to investigate the response of a nonlinear pendulum. Signals are generated by numerical integration of the mathematical model, selecting a single variable of the system as a time series. In order to simulate experimental data sets, a random noise is introduced in the signal. Basically, the analyses of periodic and chaotic motions are carried out. Results obtained from mathematical model are compared with the one obtained from time series analysis, evaluating noise sensitivity. This procedure allows the identification of the best techniques to be employed in the analysis of experimental data.


Author(s):  
Jingjun Lou ◽  
Shijian Zhu

In contrast to the unilateral claim in some papers that a positive Lyapunov exponent means chaos, it was claimed in this paper that this is just one of the three conditions that Lyapunov exponent should satisfy in a dissipative dynamical system when the chaotic motion appears. The other two conditions, any continuous dynamical system without a fixed point has at least one zero exponent, and any dissipative dynamical system has at least one negative exponent and the sum of all of the 1-dimensional Lyapunov exponents id negative, are also discussed. In order to verify the conclusion, a MATLAB scheme was developed for the computation of the 1-dimensional and 3-dimensional Lyapunov exponents of the Duffing system with square and cubic nonlinearity.


2016 ◽  
Vol 0 (0) ◽  
Author(s):  
M Kalami Yazdi ◽  
P Hosseini Tehrani

AbstractThe capacity and effectiveness of a modified variational approach, namely global error minimization (GEM) is illustrated in this study. For this purpose, the free oscillations of a rod rocking on a cylindrical surface and the Duffing-harmonic oscillator are treated. In order to validate and exhibit the merit of the method, the obtained result is compared with both of the exact frequency and the outcome of other well-known analytical methods. The corollary reveals that the first order approximation leads to an acceptable relative error, specially for large initial conditions. The procedure can be promisingly exerted to the conservative nonlinear problems.


Robotics ◽  
2013 ◽  
pp. 1012-1019
Author(s):  
Magda Judith Morales Tavera ◽  
Omar Lengerke ◽  
Max Suell Dutra

Intelligent Transportation Systems (ITS) are the future of transportation. As a result of emerging standards, vehicles will soon be able to talk to one another as well as their environment. A number of applications will be made available for vehicular networks that improve the overall safety of the transportation infrastructure. This chapter develops a method to impart chaotic motions to an Automated Guided Vehicle (AGV). The chaotic AGV implies a mobile robot with a controller that ensures chaotic motions. This kind of motion is characterized by the topological transitivity and the sensitive dependence on initial conditions. Due the topological transitivity, the mobile robot is guaranteed to scan the whole connected workspace. For scanning motion, the chaotic robot neither requires a map of the workspace nor plans global motions. It only requires the measurement of the workspace boundary when it comes close to it.


2017 ◽  
Vol 58 ◽  
Author(s):  
Olga Lavcel-Budko ◽  
Aleksandras Krylovas

The mathematical model of nonlinear oscillations of weightless string is analyzed. Coefficients of the mathematical model and initial conditions are periodical functions of the space variable. A multiscale perturbation technique and integrating along characteristics are used to construct asymptotic solution without secular members.


2002 ◽  
Vol 124 (2) ◽  
pp. 327-332 ◽  
Author(s):  
Tom Bucklaew ◽  
Ching-Shi Liu

In this brief the dynamic behavior of a parametrically forced manipulator, or pendulum, system with PD control is examined. For an excitation of sufficient amplitude or frequency a Hopf bifurcation to a steady-state limit cycle is shown to result, appearing as a precursor to instability. The parameter space is mapped in order to illustrate regions where control failure will likely occur, even in the strongly damped case. For weakly damped systems, the Hopf bifurcation can additionally exhibit a dependence on initial conditions. The resulting case of competing point and periodic attractors is discussed.


Sign in / Sign up

Export Citation Format

Share Document