SPECTRAL PROPERTIES AND SYMMETRIES OF DOUBLE COVERINGS OF GRAPHS WITH APPLICATIONS TO SUPERCONDUCTIVITY

2005 ◽  
Vol 15 (02) ◽  
pp. 301-324
Author(s):  
JACOB RUBINSTEIN ◽  
MICHELLE SCHATZMAN

Let M be a planar embedded graph, and let [Formula: see text] be its double covering. We count the multiplicity of the ground states of the Laplace operator on [Formula: see text] under certain symmetry constraints. The examples of interest for us are ladder-like graphs made out of n, identical rectangles. We find that in the case of an odd n, the multiplicity of the ground state is 2, and if n, is even, the ground state is simple. This result gives an answer to a conjecture by Parks on the type of phase transitions that can occur in a superconducting ladder: Parks conjectured that in the case when the magnetic field is one half fluxoid per rectangle, the phase transition would be continuous in the case of a ladder made out of two rectangles. Our result indeed implies Parks conjecture and generalizes it to any even ladder. The mathematics of this paper is a mixture of topology, symmetry arguments and comparison theorem between the eigenvalues of Laplace operators on graphs with well chosen boundary conditions.

2021 ◽  
Vol 63 (8) ◽  
pp. 1141
Author(s):  
А.К. Муртазаев ◽  
М.К. Бадиев ◽  
М.К. Рамазанов ◽  
М.А. Магомедов

The Monte Carlo method was used to study phase transitions, magnetic and thermodynamic properties of the three-dimensional antiferromagnetic Heisenberg model on a layered triangular lattice in a magnetic field. The studies were carried out in the range of variation of the magnetic field value 0≤h≤12. The magnetic structures of the ground state are obtained in a wide range of magnetic field values. The character of phase transitions is determined on the basis of the histogram method of data analysis. It was found that in the range 0≤h≤10, a first-order phase transition is realized. It is shown that a further increase in the magnetic field value removes the degeneracy of the ground state and smears out the phase transition.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 866
Author(s):  
Yasuhiro H. Matsuda

The magnetic field controls the spin and orbital motion of electrons and can induce a phase transition through a change of the ground state [...]


2016 ◽  
Vol 845 ◽  
pp. 158-161
Author(s):  
S.J. Lamekhov ◽  
Dmitry A. Kuzmin ◽  
Igor V. Bychkov ◽  
I.A. Maltsev ◽  
V.G. Shavrov

Behavior of quasi-one-dimensional multiferoic Ca3CoMnO6 in external magnetic field was investigated. Modelling by Monte Carlo method was performed to show influence of external magnetic field on appearance of polarization and temperature of phase transition in electric subsystem. Magnetization, polarization and energy components for magnetic and electric subsystems dependencies were achieved for different values of external magnetic field. Modelling showed that periodic potential in form of Frenkel-Kontorova makes influence on maximal values and temperature of phase transitions for magnetization and polarization.


2019 ◽  
Vol 64 (9) ◽  
pp. 787
Author(s):  
S. N. Afanasyev

The method of diffusion chamber in the magnetic field making use of a bremsstrahlung beam with a maximum photon energy of 150 MeV is applied to study the 12C(y,3a) and 16O(y,4a) reactions. A resonance identified as the ground state of 8Be nucleus is found in the distribution of events over the energy of the relative motion of two a-particles. The partial cross-sections of the 8Be nucleus formation channels are measured. It is shown that the mechanism of interaction between a y-quantum and a virtual a-particle pair takes place in this case.


1992 ◽  
Vol 07 (38) ◽  
pp. 3593-3600
Author(s):  
R. CHITRA

The properties of the ground state of N anyons in an external magnetic field and a harmonic oscillator potential are computed in the large-N limit using the Thomas-Fermi approximation. The number of level crossings in the ground state as a function of the harmonic frequency, the strength and the direction of the magnetic field and N are also studied.


2018 ◽  
Vol 185 ◽  
pp. 08006
Author(s):  
Vitaly Konev ◽  
Evgeny Vasinovich ◽  
Vasily Ulitko ◽  
Yury Panov ◽  
Alexander Moskvin

We have applied a generalized mean-field approach and quantum Monte-Carlo technique for the model 2D S = 1 (pseudo)spin system to find the ground state phase with its evolution under application of the (pseudo)magnetic field. The comparison of the two methods allows us to clearly demonstrate the role of quantum effects. Special attention is given to the role played by an effective single-ion anisotropy ("on-site correlation").


2004 ◽  
Vol 15 (08) ◽  
pp. 1095-1103 ◽  
Author(s):  
RECEP ERYIĞIT ◽  
RESUL ERYIĞIT ◽  
YIĞIT GÜNDÜÇ

We study ground state pairwise entanglement within one-dimensional spin-1/2 antiferromagnetic J1–J2 model with competing interactions. Contrary to some claims we found that frustration does not increase entanglement. Concurrence of nearest and next nearest neighbors are found to show abrupt change at phase transition points. We also show that the concurrence can be used to classify the phase diagram of the model in anisotropy–frustration plane.


Sign in / Sign up

Export Citation Format

Share Document