scholarly journals Taking into account thermal residual stresses in topology optimization of structures built by additive manufacturing

2018 ◽  
Vol 28 (12) ◽  
pp. 2313-2366 ◽  
Author(s):  
Grégoire Allaire ◽  
Lukas Jakabčin

We introduce a model and several constraints for shape and topology optimization of structures, built by additive manufacturing techniques. The goal of these constraints is to take into account the thermal residual stresses or the thermal deformations, generated by processes like Selective Laser Melting, right from the beginning of the structural design optimization. In other words, the structure is optimized concurrently for its final use and for its behavior during the layer-by-layer production process. It is well known that metallic additive manufacturing generates very high temperatures and heat fluxes, which in turn yield thermal deformations that may prevent the coating of a new powder layer, or thermal residual stresses that may hinder the mechanical properties of the final design. Our proposed constraints are targeted to avoid these undesired effects. Shape derivatives are computed by an adjoint method and are incorporated into a level set numerical optimization algorithm. Several 2D and 3D numerical examples demonstrate the interest and effectiveness of our approach.

2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Joseph R. Kubalak ◽  
Alfred L. Wicks ◽  
Christopher B. Williams

Abstract The layer-by-layer deposition process used in material extrusion (ME) additive manufacturing results in inter- and intra-layer bonds that reduce the mechanical performance of printed parts. Multi-axis (MA) ME techniques have shown potential for mitigating this issue by enabling tailored deposition directions based on loading conditions in three dimensions (3D). Planning deposition paths leveraging this capability remains a challenge, as an intelligent method for assigning these directions does not exist. Existing literature has introduced topology optimization (TO) methods that assign material orientations to discrete regions of a part by simultaneously optimizing material distribution and orientation. These methods are insufficient for MA–ME, as the process offers additional freedom in varying material orientation that is not accounted for in the orientation parameterizations used in those methods. Additionally, optimizing orientation design spaces is challenging due to their non-convexity, and this issue is amplified with increased flexibility; the chosen orientation parameterization heavily impacts the algorithm’s performance. Therefore, the authors (i) present a TO method to simultaneously optimize material distribution and orientation with considerations for 3D material orientation variation and (ii) establish a suitable parameterization of the orientation design space. Three parameterizations are explored in this work: Euler angles, explicit quaternions, and natural quaternions. The parameterizations are compared using two benchmark minimum compliance problems, a 2.5D Messerschmitt–Bölkow–Blohm beam and a 3D Wheel, and a multi-loaded structure undergoing (i) pure tension and (ii) three-point bending. For the Wheel, the presented algorithm demonstrated a 38% improvement in compliance over an algorithm that only allowed planar orientation variation. Additionally, natural quaternions maintain the well-shaped design space of explicit quaternions without the need for unit length constraints, which lowers computational costs. Finally, the authors present a path toward integrating optimized geometries and material orientation fields resulting from the presented algorithm with MA–ME processes.


Author(s):  
Bashir Khoda

Current additive manufacturing processes mostly accustomed with mono-material process plan algorithm to build object layer by layer. However, building a multi-material or heterogeneous object with an additive manufacturing system is fairly new but emerging concept. Unlike mono-material object, heterogeneous object contains multiple features or inhomogeneous architecture and can be decomposed into two dimensional heterogeneous layers with islands where each island represents associated feature’s properties. The material deposition path-plan in such multi-feature/multi-contour layers requires more resources and may affect the part integrity, quality, and build time. A novel framework is presented in this paper to determine the optimum build direction for heterogeneous object by differentiating the slice based on the resources requirement. Slices are bundled based on the heterogeneity and the effect of build directions are quantified considering the feature characteristics and manufacturing attributes. The proposed methodology is illustrated by examples with 50% or more homogeneous slices along the optimum build direction. The outcome would certainly benefit the process plan for multi-material additive manufacturing techniques.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402091695
Author(s):  
Asliah Seharing ◽  
Abdul Hadi Azman ◽  
Shahrum Abdullah

This review analyses the design, mechanical behaviors, manufacturability, and application of gradient lattice structures manufactured via metallic additive manufacturing technology. By varying the design parameters such as cell size, strut length, and strut diameter of the unit cells in lattice structures, a gradient property is obtained to achieve different levels of functionalities and optimize strength-to-weight ratio characteristics. Gradient lattice structures offer variable densification and porosities; and can combine more than one type of unit cells with different topologies which results in different performances in mechanical behavior layer-by-layer compared to non-gradient lattice structures. Additive manufacturing techniques are capable of manufacturing complex lightweight parts such as uniform and gradient lattice structures and hence offer design freedom for engineers. Despite these advantages, additive manufacturing has its own unique drawbacks in manufacturing lattice structures. The rules and strategies in overcoming the constraints are discussed and recommendations for future work were proposed.


Author(s):  
Seshadev Sahoo ◽  
Jyotirmoy Nandy

Additive manufacturing (AM) has emerged as the most versatile process in the manufacturing sector. The advantages of AM such as applicability in a wide range of industries, ease of manufacturing, and reduction in waste production have increased its demand over the past decades. Out of the many techniques under AM, direct metal laser sintering (DMLS) is one of the most efficient manufacturing techniques that uses a high-powered laser beam to sinter metal powders in a layer-by-layer fashion. With the current usage of computational modeling, the prediction of microstructure evolution and other thermo-mechanical properties of different materials have been of great advantage to researchers. Along with a detailed classification of AM techniques, this chapter focuses on the use of continuum, phase field, and atomistic modeling under the DMLS process. The results show that multiscale modeling can be advantageous in gaining deeper insight into various phenomena like diffusion and sintering.


2020 ◽  
Vol 15 (55) ◽  
pp. 119-135
Author(s):  
Felipe Fiorentin ◽  
Bernardo Oliveira ◽  
João Pereira ◽  
José Correia ◽  
Abilio M.P. de Jesus ◽  
...  

The main goal of the present research is to propose an integrated methodology to address the fatigue performance of topology optimized components, produced by additive manufacturing. The main steps of the component design will be presented, specially the methods and parameters applied to the topology optimization and the post-smoothing process. The SIMP method was applied in order to obtain a lighter component and a suitable stiffness for the desired application. In addition, since residual stresses are intrinsic to every metallic additive manufacturing process, the influence of those stresses will be also analyzed. The Laser Powder Bed Fusion was numerically simulated aiming at evaluating the residual stresses the workpiece during the manufacturing process and to investigate how they could influence the fatigue behavior of the optimized component. The effect of the built orientation of the workpiece on the residual stresses at some selected potential critical points are evaluated. The final design solution presented a stiffness/volume ratio nearly 6 times higher when compared to the initial geometry. By choosing the built orientation, it is possible impact favorably in the fatigue life of the component.


Author(s):  
Mikhail Osanov ◽  
James K. Guest

The rapid advance of additive manufacturing technologies has provided new opportunities for creating complex structural shapes. In order to fully exploit these opportunities, however, engineers must re-think the design process and leverage these new capabilities while respecting manufacturing constraints inherent in various processes. Topology optimization, as a free-from design tool, is a potentially powerful approach to addressing this design challenge provided the manufacturing process is properly accounted for. This work examines geometric constraints related to feature size and the layer-by-layer nature of the manufacturing process. A simple modification to the Heaviside Projection Method, an approach for naturally achieving geometric constraints in topology optimization, is proposed and demonstrated to have clear, understandable impact on three-dimensional optimized beam designs.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 58 ◽  
Author(s):  
Andreas Malmelöv ◽  
Andreas Lundbäck ◽  
Lars-Erik Lindgren

Additive manufacturing is the process by which material is added layer by layer. In most cases, many layers are added, and the passes are lengthy relative to their thicknesses and widths. This makes finite element simulations of the process computationally demanding owing to the short time steps and large number of elements. The classical lumping approach in computational welding mechanics, popular in the 80s, is therefore, of renewed interest and is evaluated in this work. The method of lumping means that welds are merged. This allows fewer time steps and a coarser mesh. It was found that the computation time can be reduced considerably, with retained accuracy for the resulting temperatures and deformations. The residual stresses become, to a certain degree, smaller. The simulations were validated against a directed energy deposition (DED) experiment with alloy 625.


Author(s):  
Rajit Ranjan ◽  
Rutuja Samant ◽  
Sam Anand

Additive manufacturing (AM) processes are used to fabricate complex geometries using a layer-by-layer material deposition technique. These processes are recognized for creating complex shapes which are difficult to manufacture otherwise and enable designers to be more creative with their designs. However, as AM is still in its developing stages, relevant literature with respect to design guidelines for AM is not readily available. This paper proposes a novel design methodology which can assist designers in creating parts that are friendly to additive manufacturing. The research includes formulation of design guidelines by studying the relationship between input part geometry and AM process parameters. Two cases are considered for application of the developed design guidelines. The first case presents a feature graph-based design improvement method in which a producibility index (PI) concept is introduced to compare AM friendly designs. This method is useful for performing manufacturing validation of pre-existing designs and modifying it for better manufacturability through AM processes. The second approach presents a topology optimization-based design methodology which can help designers in creating entirely new lightweight designs which can be manufactured using AM processes with ease. Application of both these methods is presented in the form of case studies depicting design evolution for increasing manufacturability and associated producibility index of the part.


Sign in / Sign up

Export Citation Format

Share Document