THE FUTURE OF A Λ-UNIVERSE

2005 ◽  
Vol 14 (09) ◽  
pp. 1649-1655 ◽  
Author(s):  
PEDRO F. GONZÁLEZ-DÍAZ ◽  
CARMEN L. SIGÜENZA

It is argued that the accretion of phantom energy onto a wormhole in a universe with a positive cosmological constant leads also to a gradual increase of the wormhole throat radius, which eventually overtakes the super-accelerated expansion of the universe and becomes infinite at a time in the future before the big rip. Thus, the universe as a whole can time travel toward the past or the future.

Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 163
Author(s):  
Verónica Motta ◽  
Miguel A. García-Aspeitia ◽  
Alberto Hernández-Almada ◽  
Juan Magaña ◽  
Tomás Verdugo

The accelerated expansion of the Universe is one of the main discoveries of the past decades, indicating the presence of an unknown component: the dark energy. Evidence of its presence is being gathered by a succession of observational experiments with increasing precision in its measurements. However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda cold dark matter, faces several problems related to the nature of such energy component. This has led to a growing exploration of alternative models attempting to solve those drawbacks. In this review, we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well as some of the most used cosmological samples. Next, we discuss how to constrain each model’s parameters using observational data. Finally, we summarize the status of dark energy modeling.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944013
Author(s):  
Fotios K. Anagnostopoulos ◽  
Georgios Kofinas ◽  
Vasilios Zarikas

The novel idea is that the undergoing accelerated expansion of the universe happens due to infrared quantum gravity modifications at intermediate astrophysical scales of galaxies or galaxy clusters, within the framework of Asymptotically Safe gravity. The reason is that structures of matter are associated with a scale-dependent positive cosmological constant of quantum origin. In this context, no extra unproven energy scales or fine-tuning are used. Furthermore, this model was confronted with the most recent observational data from a variety of probes, and with the aid of Bayesian analysis, the most probable values of the free parameters were extracted. Finally, the model proved to be statistically equivalent with [Formula: see text]CDM, and thus being able to resolve naturally the concept of dark energy and its associated cosmic coincidence problem.


2015 ◽  
Vol 93 (11) ◽  
pp. 1324-1329
Author(s):  
Alireza Sepehri ◽  
Anirudh Pradhan ◽  
Hassan Amirhashchi

Recently, various observational data predict the possibility that dark energy could be in the form of phantom field. The positive phantom-energy density grows without limit with the expansion of the Universe and leads to a big-rip singularity at a finite future time. The main question arises: what is the origin of the big rip singularity in a four-dimensional Universe? To answer this question, in this paper, we propose a new model in super string theory that allows taking into account the Dirac and vector string tachyon in addition to the scalar one, which stretches between branes and antibranes. In this model, scalar and Dirac string tachyons cancel each other’s effects and the only effect induced by the vector tachyon can be observed in density and pressures of the universe. We observe that different scale factors, pressures, and dark energy equation of state parameters are produced in different directions because of inhomogeneous tachyon dynamics and consequently one anisotropic universe is formed. Also, these observations are given in terms of effective tachyon potential and the separation between branes and antibranes. Thus, we have shown that the expansion of the anisotropic Universe is controlled by the vector string tachyon and evolves from the non-phantom phase to the phantom one and consequently, the phantom-dominated era of the universe accelerates and ends up in a big-rip singularity.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Kangujam Priyokumar Singh ◽  
Koijam Manihar Singh

In trying to explain the present accelerated expansion of the universe in the light of a five-dimensional Brans-Dicke theory, it is found that the fifth dimension itself here acts as a source of dark energy. It may be taken as a curvature-induced form of dark energy, in one case of which it behaves similar to that form of dark energy arising out of the cosmological constant which is the most commonly accepted form of dark energy. It is also found that this new type of dark energy is free from big rip singularity and may be taken as a viable form of dark energy which can explain some of physical mysteries of the universe.


Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


2002 ◽  
Vol 17 (05) ◽  
pp. 295-302
Author(s):  
SUBENOY CHAKRABORTY

In this paper it is shown that the present accelerated expansion of the Universe can be explained only by considering variation of the speed of light, without taking into account the cosmological constant or quintessence matter.


2021 ◽  
pp. 2150114
Author(s):  
Manuel Urueña Palomo ◽  
Fernando Pérez Lara

The vacuum catastrophe results from the disagreement between the theoretical value of the energy density of the vacuum in quantum field theory and the estimated one observed in cosmology. In a similar attempt in which the ultraviolet catastrophe was solved, we search for the value of the cosmological constant by brute-force through computation. We explore combinations of the fundamental constants in physics performing a dimensional analysis, in search of an equation resulting in the measured energy density of the vacuum or cosmological constant that is assumed to cause the accelerated expansion of the universe.


2018 ◽  
Vol 33 (40) ◽  
pp. 1850240
Author(s):  
Babur M. Mirza

We present here a general relativistic mechanism for accelerated cosmic expansion and the Hubble’s parameter. It is shown that spacetime vorticity coupled to the magnetic field density in galaxies causes the galaxies to recede from one another at a rate equal to the Hubble’s constant. We therefore predict an oscillatory universe, with zero curvature, without assuming violation of Newtonian gravity at large distances or invoking dark energy/dark matter hypotheses. The value of the Hubble’s constant, along with the scale of expansion, as well as the high isotropy of CMB radiation are deduced from the model.


1972 ◽  
Vol 25 (2) ◽  
pp. 207 ◽  
Author(s):  
DT Pegg

In conventional electrodynamic theory, the advanced potential solution of Maxwell's equations is discarded on the ad hoc basis that information can be received from the past only and not from the future. This difficulty is overcome by the Wheeler?Feynman absorber theory, but unfortunately the existence of a completely retarded solution in this theory requires a steady-state universe. In the present paper conventional electrodynamics is used to obtain a condition which, if satisfied, allows information to be received from the past only, and ensures that the retarded potential is the only consistent solution. The condition is that a function Ua of the future structure of the universe is infinite, while the corresponding function Ur of the past structure is finite. Of the currently acceptable cosmological models, only the steady-state, the open big-bang, and the Eddington-Lema�tre models satisfy this condition. In these models there is no need for an ad hoc reason for the preclusion of advanced potentials.


2014 ◽  
Vol 74 (11) ◽  
Author(s):  
Ricardo Aguila ◽  
José Edgar Madriz Aguilar ◽  
Claudia Moreno ◽  
Mauricio Bellini

Sign in / Sign up

Export Citation Format

Share Document