scholarly journals Time Direction of Information Propagation and Cosmology

1972 ◽  
Vol 25 (2) ◽  
pp. 207 ◽  
Author(s):  
DT Pegg

In conventional electrodynamic theory, the advanced potential solution of Maxwell's equations is discarded on the ad hoc basis that information can be received from the past only and not from the future. This difficulty is overcome by the Wheeler?Feynman absorber theory, but unfortunately the existence of a completely retarded solution in this theory requires a steady-state universe. In the present paper conventional electrodynamics is used to obtain a condition which, if satisfied, allows information to be received from the past only, and ensures that the retarded potential is the only consistent solution. The condition is that a function Ua of the future structure of the universe is infinite, while the corresponding function Ur of the past structure is finite. Of the currently acceptable cosmological models, only the steady-state, the open big-bang, and the Eddington-Lema�tre models satisfy this condition. In these models there is no need for an ad hoc reason for the preclusion of advanced potentials.

Author(s):  
Helge Kragh

The presently accepted big-bang model of the universe emerged during the period 1930-1970, following a road that was anything but smooth. By 1950 the essential features of the big-bang theory were established by George Gamow and his collaborators, and yet the theory failed to win recognition. A major reason was that the big-bang picture of the evolving universe was challenged by the radically different picture of a steady-state universe favoured by Fred Hoyle and others. By the late 1950s there was no convincing reason to adopt one theory over the other. Out of the epic controversy between the two incompatible world models arose our modern view of the universe. Although the classical steady-state model was abandoned in the mid-1960s, attempts to modify it can be followed up to the present.


2021 ◽  
pp. 41
Author(s):  
Mikhail I. Kleandrov

In the article, in order to expand the horizons of legal science, the problems of future legal regulation with Another Mind, its subjects are considered. According to the author, based on the premise that the Universe is boundless both in space and in time, and “everything can be” in it, in a monochronological projection, where time moves from the past through the present to the future, subjects of Another Mind are both of earthly origin, and alien, alien, alien, galactic, etc. origin, having a carbon basis, as well as subjects of a different basis - silicon, radiant, plasmoid, etc., represent, when entering into appropriate relations with them, a legal component that can be considered a metapravo. And in the multichronological projection, where time is parallel, perpendicular, diagonal, as well as faster and slower – in the widest ranges – compared to ours, etc., relations with Another Mind are unimaginably more complicated, and their legal component will already be a megapravo.


Author(s):  
Eric Scerri

Having now examined attempts to explain the nature of the elements and the periodic system in a theoretical manner, it is necessary to backtrack a little in order to pick up a number of important issues not yet addressed. As in the preceding chapters, several contributions from fields outside of chemistry are encountered, and the treatment proceeds historically. So far in this book, the elements have been treated as if they have always existed, fully formed. Nothing has yet been said about how the elements have evolved or about the relative abundance of the isotopes of the elements. These questions form the contents of this chapter. It also emerges that different isotopes show different stabilities, a feature that can be explained to a considerable extent by appeal to theories from nuclear physics. The study of nucleosynthesis, and especially the development of this field, is intimately connected to the development of the field of cosmology as a branch of physical science. In a number of instances, different cosmological theories have been judged according to the degree to which they could explain the observed universal abundances of the various elements. Perhaps the most controversial cosmological debate has been over the rival theories of the big bang and the steady-state models of the universe. The proponents of these theories frequently appealed to relative abundance data, and indeed, the eventual capitulation of the steady-state theorists, or at least some of them, was crucially dependent upon the observed ratio of hydrogen to helium in the universe. Chapters 2, 3, and 6 discussed Prout’s hypothesis, according to which all the elements are essentially made out of hydrogen. Although the hypothesis was initially rejected on the basis of accurate atomic weight determinations, it underwent a revival in the twentieth century. As mentioned in chapter 6, the discoveries of Anton van den Broek, Henry Moseley, and others showed that there is a sense in which all elements are indeed composites of hydrogen.


Author(s):  
Demetris Nicolaides

Heraclitus declares the being (that which exists, nature) but identifies it with becoming, but Parmenides declares just the Being; only what is, is, what is not, is not. All “follows” from that: change, he argues, is logically impossible and so what is, is one and unchangeable! This dazzling absolute monism is in daring disagreement with sense perception, but curiously it has found a well-known genius as a supporter. Emboldened by his theory of relativity, Einstein considers the universe as a four-dimensional “block” (a space-time continuum like a loaf of bread) which, remarkably, contains all moments of time (of past, present, and future) always, and where change is an illusion. He said, “For we convinced physicists, the distinction between past, present, and future is only an illusion, however persistent.” In the block universe, the past is not gone, it is present; and the future, like the present, is, well, present, too.


1994 ◽  
Vol 159 ◽  
pp. 293-299
Author(s):  
G. Burbidge ◽  
F. Hoyle ◽  
J.V. Narlikar

The standard big bang cosmology has the universe created out of a primeval explosion that not only created matter and radiation but also spacetime itself. The big bang event itself cannot be discussed within the framework of a physical theory but the events following it are in principle considered within the scope of science. The recent developments on the frontier between particle physics and cosmology highlight the attempts to chart the history of the very early universe.


1986 ◽  
Vol 7 ◽  
pp. 27-38 ◽  
Author(s):  
Vera C. Rubin

Thirty years ago, observational cosmology consisted of the search for two numbers: Ho, the rate of expansion of the universe at the position of the Galaxy; and qo, the deceleration parameter. Twenty years ago, the discovery of the relic radiation from the Big Bang produced another number, 3oK. But it is the past decade which has seen the enormous development in both observational and theoretical cosmology. The universe is known to be immeasurably richer and more varied than we had thought. There is growing acceptance of a universe in which most of the matter is not luminous. Nature has played a trick on astronomers, for we thought we were studying the universe. We now know that we were studying only the small fraction of it that is luminous. I suspect that this talk this evening is the first IAU Discourse devoted to something that astronomers cannot see at any wavelength: Dark Matter in the Universe.


2013 ◽  
Vol 45 (04) ◽  
pp. 1083-1110 ◽  
Author(s):  
Sergey Foss ◽  
Stan Zachary

Many regenerative arguments in stochastic processes use random times which are akin to stopping times, but which are determined by the future as well as the past behaviour of the process of interest. Such arguments based on ‘conditioning on the future’ are usually developed in an ad-hoc way in the context of the application under consideration, thereby obscuring the underlying structure. In this paper we give a simple, unified, and more general treatment of such conditioning theory. We further give a number of novel applications to various particle system models, in particular to various flavours of contact processes and to infinite-bin models. We give a number of new results for existing and new models. We further make connections with the theory of Harris ergodicity.


Author(s):  
Rodney Bartlett

This hypothesis is the result of my conviction that science will oneday prove everything in space and time is part of a unification. In "A Brief History of Time", Stephen Hawking wrote, "If everything in the universe depends on everything else in a fundamental way, it might be impossible to get close to a full solution (of the universe's puzzles) by investigating parts of the problem (such as general relativity and quantum mechanics) in isolation." The goal: to establish a “proof of concept” to which equations can be added. It’s concluded the Steady State, Big Bang, Inflation and Multiverse theories all ultimately fail and a topological model including bits (binary digits), Mobius strips, figure-8 Klein bottles and Wick rotation works better. The failed cosmologies have impressive points leading to the idea that they’re all necessary stepping-stones. For example, the Big Bang is seen here as violation of the 1st Law of Thermodynamics but its supposed origin from quantum fluctuations is reminiscent of bits switching between 1 and 0. The topological hypothesis has potential to explain dark matter, dark energy, and electromagnetic-gravitational union. Finally, the article introduces what is called vector-tensor-scalar geometry - and extensions of Einstein's Gravity and Maxwell's Electromagnetism.


Author(s):  
Rodney Bartlett

The part of this article dealing with topological insulators and topological superconductors was first written about two years ago - the ideas in the part about the topological universe originated six years ago or more. It’s rather strange that I never put the two parts together in writing before. My belief in unification is unshakeable - I’ve been convinced for years that the universe must be composed of topology. Since Earth is part of the cosmos, entanglement means it must have topological materials. The reverse is also true: topological materials on Earth are well known to science - so in a unification, space and time inevitably possess topological composition. Topological materials (topological insulators, topological superconductors) can be less mystifying if they’re related to the paradigm-shifting deterministic view of quantum mechanics which is described in the universal topology (the “rubber-sheet geometry” of the cosmos): see my previous submission “Hypothesis of Quantum Gravity - Resulting from a Static, Topological Universe Resulting from the Positives and Negatives of the Steady State and Big Bang Theories" at https://www.preprints.org/manuscript/202105.0239/v1 (the first section of this present article is a quick summary of the relevant parts).


Sign in / Sign up

Export Citation Format

Share Document