scholarly journals PHYSICAL ASPECTS OF QUASI-LOCAL BLACK HOLE HORIZONS

2011 ◽  
Vol 20 (11) ◽  
pp. 2205-2221
Author(s):  
ALEX B. NIELSEN

We discuss some of the physical aspects expected to be associated with black holes. These include Hawking radiation, horizon entropy and cosmic censorship. In particular we focus on whether these properties are more naturally associated to causally defined horizons or quasi-local horizons.

Author(s):  
ALEX B. NIELSEN

We discuss some of the physical aspects expected to be associated with black holes. These include Hawking radiation, horizon entropy and cosmic censorship. In particular we focus on whether these properties are more naturally associated to causally defined horizons or quasi-local horizons.


2017 ◽  
Vol 26 (14) ◽  
pp. 1750165 ◽  
Author(s):  
Biplab Paik

Classical singular black holes are known to obey the cosmic censorship conjecture, and therefore are indestructible until they get completely evaporated by the Hawking radiation phenomenon. However, a nonsingular quantum black hole may not be necessarily indestructible. To proceed in this test, we deduce the first law of thermodynamics for the renormalization technique based, quantum improved, nonsingular Kerr class black hole, and then the test is done by Wald’s method. It emerges that while the quantum improvement leads to an escape for black hole from complete evaporation, it also makes a spinning black hole well destructible against overspinning. Even though, in general, spinning quantum black holes appear quite destructible, in the regime of exceedingly low rate of allowed spin, slower the spin becomes, weaker happens to be the probability of black hole getting destroyed. In particular, the minimally energized black hole relic, which is of a Schwarzschild class, emerges absolutely indestructible. It has further been argued that the practical stable existence of “G-lumps” is improbable. In context of our formal work, we find a great scope for figuring out the quantum corrected differential version of “entropy-area law” for Kerr class black hole.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Xuanhua Wang ◽  
Ran Li ◽  
Jin Wang

Abstract We apply the recently proposed quantum extremal surface construction to calculate the Page curve of the eternal Reissner-Nordström black holes in four dimensions ignoring the backreaction and the greybody factor. Without the island, the entropy of Hawking radiation grows linearly with time, which results in the information paradox for the eternal black holes. By extremizing the generalized entropy that allows the contributions from the island, we find that the island extends to the outside the horizon of the Reissner-Nordström black hole. When taking the effect of the islands into account, it is shown that the entanglement entropy of Hawking radiation at late times for a given region far from the black hole horizon reproduces the Bekenstein-Hawking entropy of the Reissner-Nordström black hole with an additional term representing the effect of the matter fields. The result is consistent with the finiteness of the entanglement entropy for the radiation from an eternal black hole. This facilitates to address the black hole information paradox issue in the current case under the above-mentioned approximations.


2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.


2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2021 ◽  
pp. 2150207
Author(s):  
Zi-Yu Fu ◽  
Bao-Qi Zhang ◽  
Chuan-Yin Wang ◽  
Hui-Ling Li

By analyzing the energy–momentum relationship of the absorbed fermions dropping into a Reissner–Nordstöm–anti-de Sitter black hole surrounded by dark matter, the laws of thermodynamic and weak cosmic censorship conjecture in the extended phase space are investigated. We find that the first law of thermodynamics is valid. However, the validity of the second law of thermodynamics depends on the density [Formula: see text] of the perfect fluid dark matter. In addition, we also find that when the fermions are absorbed, the structures of black hole surrounded by dark matter would not change. Therefore, weak cosmic censorship conjecture holds for the extreme black holes and the non-extreme black holes.


2020 ◽  
Vol 35 (30) ◽  
pp. 2050194
Author(s):  
Peng Wen ◽  
Xin-Yang Wang ◽  
Wen-Biao Liu

By calculating the entropy of a scalar field in the interior volume of noncommutative black holes and considering an infinitesimal process of Hawking radiation, a proportion function is constructed that reflects the evolution relation between the scalar field entropy and Bekenstein–Hawking entropy under Hawking radiation. Comparing with the case of Schwarzschild black holes, the new physics of this research can be expanded to the later stage of Hawking radiation. From the result, we find that the proportion function is still a constant in the earlier stage of Hawking radiation, which is identical to the case of Schwarzschild black holes. As Hawking radiation goes into the later stage, the behavior of the function will be dominated by the noncommutative effect. In this circumstance, the proportion function is no longer a constant and decreases with the evaporation process. When the noncommutative black hole evolves into its final state with Hawking radiation, the interior volume will converge to a certain value, which implies that the loss of information of the black hole during the evaporation process will finally be stored in the limited interior volume.


2020 ◽  
Vol 29 (14) ◽  
pp. 2042003
Author(s):  
Shahar Hod

The Penrose strong cosmic censorship conjecture asserts that Cauchy horizons inside dynamically formed black holes are unstable to remnant matter fields that fall into the black holes. The physical importance of this conjecture stems from the fact that it provides a necessary condition for general relativity to be a truly deterministic theory of gravity. Determining the fate of the Penrose conjecture in nonasymptotically flat black hole spacetimes has been the focus of intense research efforts in recent years. In this paper, we provide a remarkably compact proof, which is based on Bekenstein’s generalized second law of thermodynamics, for the validity of the intriguing Penrose conjecture in physically realistic (dynamically formed) curved black hole spacetimes.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Jie Jiang ◽  
Ming Zhang

AbstractIn this paper, based on the new version of the gedanken experiments proposed by Sorce and Wald, we examine the weak cosmic censorship in the perturbation process of accreting matter fields for the charged dilaton-Lifshitz black holes. In the investigation, we assume that the black hole is perturbed by some extra matter source satisfied the null energy condition and ultimately settle down to a static charged dilaton-Lifshitz black hole in the asymptotic future. Then, after applying the Noether charge method, we derive the first-order and second-order perturbation inequalities of the perturbation matter fields. As a result, we find that the nearly extremal charged dilaton-Lifshitz black hole cannot be destroyed under the second-order approximation of perturbation. This result implies that the weak cosmic censorship conjecture might be a general feature of the Einstein gravity, and it is independent of the asymptotic behaviors of the black holes.


Sign in / Sign up

Export Citation Format

Share Document