SCIENCE WITH THE HARD X-RAY MODULATION TELESCOPE

2013 ◽  
Vol 22 (11) ◽  
pp. 1360005 ◽  
Author(s):  
◽  
TIPEI LI

The hard X-ray modulation telescope (HXMT) is a slat-collimated instrument sensitive in the 1–250 keV energy band. It will use the direct demodulation technique to conduct an all sky imaging survey with both high sensitivity and high spatial resolution. The moderate field of view also allows for sensitive spectroscopic and timing observations of bright sources in the pointed mode. The wide energy coverage and large collecting area in the hard X-ray band (nearly 5000 cm2 effective area at 30–100 keV) make HXMT a unique instrument for some scientific goals. Here we give brief discussion about scientific objectives that can be addressed with HXMT, involving black holes at a variety of scales and equations of states of matter at extreme conditions.

1996 ◽  
Vol 165 ◽  
pp. 321-331
Author(s):  
H. Inoue

ASCA, the fourth Japanese X-ray astronomy satellite, was launched by the Institute of Space and Astronautical Science (ISAS) on 1993 February 20. ASCA is designed to be a high-capability X-ray observatory (Tanaka et al. 1994). It is equipped with nested thin-foil mirrors which provide a large effective area over a wide energy range from 0.5 to 10 keV. Two different types of detectors, CCD cameras (SIS) and imaging gas scintillation proportional counters (GIS) are employed as the focal plane instruments.


2001 ◽  
Vol 19 (2) ◽  
pp. 285-293 ◽  
Author(s):  
T.A. PIKUZ ◽  
A. YA. FAENOV ◽  
M. FRAENKEL ◽  
A. ZIGLER ◽  
F. FLORA ◽  
...  

The shadow monochromatic backlighting (SMB) scheme, a modification of the well-known soft X-ray monochromatic backlighting scheme, is proposed. It is based on a spherical crystal as the dispersive element and extends the traditional scheme by allowing one to work with a wide range of Bragg angles and thus in a wide spectral range. The advantages of the new scheme are demonstrated experimentally and supported numerically by ray-tracing simulations. In the experiments, the X-ray backlighter source is a laser-produced plasma, created by the interaction of an ultrashort pulse, Ti:Sapphire laser (120 fs, 3–5 mJ, 1016 W/cm2 on target) or a short wavelength XeCl laser (10 ns, 1–2 J, 1013 W/cm2 on target) with various solid targets (Dy, Ni + Cr, BaF2). In both experiments, the X-ray sources are well localized spatially (∼20 μm) and are spectrally tunable in a relatively wide wavelength range (λ = 8–15 Å). High quality monochromatic (δλ/λ ∼ 10−5–10−3) images with high spatial resolution (up to ∼4 μm) over a large field of view (a few square millimeters) were obtained. Utilization of spherically bent crystals to obtain high-resolution, large field, monochromatic images in a wide range of Bragg angles (35° < Θ < 90°) is demonstrated for the first time.


2019 ◽  
Vol 487 (4) ◽  
pp. 4721-4736 ◽  
Author(s):  
G Yang (杨光) ◽  
W N Brandt ◽  
S F Zhu (朱世甫) ◽  
F E Bauer ◽  
B Luo (罗斌) ◽  
...  

ABSTRACT Recent works have discovered two fast (≈10 ks) extragalactic X-ray transients in the Chandra Deep Field-South (CDF-S XT1 and XT2). These findings suggest that a large population of similar extragalactic transients might exist in archival X-ray observations. We develop a method that can effectively detect such transients in a single Chandra exposure, and systematically apply it to Chandra surveys of CDF-S, CDF-N, DEEP2, UDS, COSMOS, and E-CDF-S, totaling 19 Ms of exposure. We find 13 transient candidates, including CDF-S XT1 and XT2. With the aid of available excellent multiwavelength observations, we identify the physical nature of all these candidates. Aside from CDF-S XT1 and XT2, the other 11 sources are all stellar objects, and all of them have z-band magnitudes brighter than 20. We estimate an event rate of ${59^{+77}_{-38}\ \rm {evt\ yr^{-1}\, deg^{-2}}}$ for CDF-S XT-like transients with 0.5–7 keV peak fluxes log Fpeak ≳ −12.6 (erg cm−2 s−1). This event rate translates to ${\approx 15^{+20}_{-10}}$ transients existing among Chandra archival observations at Galactic latitudes |b| &gt; 20°, which can be probed in future work. Future missions such as Athena and the Einstein Probe with large grasps (effective area × field of view) are needed to discover a large sample (∼thousands) of fast extragalactic X-ray transients.


1988 ◽  
Vol 32 ◽  
pp. 115-120 ◽  
Author(s):  
D. A. Carpenter ◽  
M. A. Taylor ◽  
C. E. Holcombe

A laboratory-based X-ray microprobe, composed of a high-brilliance microfocus X-ray tube, coupled with a small glass capillary, has been developed for materials applications. Because of total external reflectance of X rays from the smooth inside bore of the glass capillary, the microprobe has a high sensitivity as well as a high spatial resolution. The use of X rays to excite elemental fluorescence offers the advantages of good peak-to-background, the ability to operate in air, and minimal specimen preparation. In addition, the development of laboratory-based instrumentation has been of Interest recently because of greater accessibility when compared with synchrotron X-ray microprobes.


2017 ◽  
Vol 13 (S332) ◽  
pp. 25-36 ◽  
Author(s):  
Nanase Harada

AbstractIn external galaxies, some galaxies have higher activities of star formation and central supermassive black holes. The interstellar medium in those galaxies can be heated by different mechanisms such as UV-heating, X-ray heating, cosmic-ray heating, and shock/mechanical heating. Chemical compositions can also be affected by those heating mechanisms. Observations of many molecular species in those nearby galaxies are now possible with the high sensitivity of Atacama Large Millimeter/sub-millimeter Array (ALMA). Here I cover different chemical models for those heating mechanisms. In addition, I present recent ALMA results of extragalactic astrochemistry including our results of a face-on galaxy M83 and an infrared-luminous merger NGC 3256.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1667 ◽  
Author(s):  
Dong Zhang ◽  
Liyin Yuan ◽  
Shengwei Wang ◽  
Hongxuan Yu ◽  
Changxing Zhang ◽  
...  

Wide Swath and High Resolution Airborne Pushbroom Hyperspectral Imager (WiSHiRaPHI) is the new-generation airborne hyperspectral imager instrument of China, aimed at acquiring accurate spectral curve of target on the ground with both high spatial resolution and high spectral resolution. The spectral sampling interval of WiSHiRaPHI is 2.4 nm and the spectral resolution is 3.5 nm (FWHM), integrating 256 channels coving from 400 nm to 1000 nm. The instrument has a 40-degree field of view (FOV), 0.125 mrad instantaneous field of view (IFOV) and can work in high spectral resolution mode, high spatial resolution mode and high sensitivity mode for different applications, which can adapt to the Velocity to Height Ratio (VHR) lower than 0.04. The integration has been finished, and several airborne flight validation experiments have been conducted. The results showed the system’s excellent performance and high efficiency.


1991 ◽  
Vol 35 (A) ◽  
pp. 407-413 ◽  
Author(s):  
Atsushi Shibata ◽  
Katsunari Sasaki ◽  
Takao Kinefuchi

AbstractThe Fuji Imaging Plate (IP) is a 2-dimensional detector in which a latent X-ray image is stored as a distribution of color centers on a photostimulable phosphor (BaFBr:Eu2+) screen. It has a large effective area, wide dynamic range and high sensitivity. Thus it has been widely used not only in medical but also in scientific and industrial fields. Particularly in X-ray structure analysis, mainly of proteins, it has been used extensively and achieved good results.On the other hand, few applications have been reported in the field except for structure analysis, in spite of the superior performance of the IP which will give significant advantages in various measurements which have been done using an X-ray film such as electric device and fiber specimen.Therefore we report here the basic performance of R-AXIS II(Rigaku Automated X-Ray Imaging System II), an IP reader made by Rigaku, and some applications of X-ray diffraction measurements using IP.


1985 ◽  
Vol 6 (2) ◽  
pp. 186-194 ◽  
Author(s):  
J. G. Greenhill ◽  
K. B. Fenton ◽  
R. K. Sood ◽  
I. R. Tuohy

AbstractA broad-band (2-190 keV) Australian X-ray satellite could provide a spectral sensitivity substantially better than HEAO-1 or any presently approved spacecraft. It would be virtually unique by providing simultaneously data over a wide energy range with high sensitivity and energy resolution in the little measured region above 30 keV. These measurements are vital to our understanding of such diverse topics as the cyclotron line production mechanism in binary sources, the structure of the magnetosphere of neutron stars, the origin of the diffuse cosmic X-ray background and the nature of the giant power sources in active galaxies and stellar black holes. Details of the proposed spacecraft and scientific objectives are given.


1971 ◽  
Vol 41 ◽  
pp. 134-134
Author(s):  
Albert G. Opp ◽  
Nancy G. Roman

High energy astrophysical observations supported by the National Aeronautics and Space Administration will be conducted primarily from the Small Astronomy Satellites (SAS) and the High Energy Astronomy Observatories (HEAO). At the present time, three Small Astronomy Satellites have been approved for flight. The first (SAS A) will carry a set of collimated proportional counters to conduct a high sensitivity, high spatial resolution, all sky survey for X-ray sources, to search for temporal variations in the source intensity, and to measure the spectral distribution of sources in the energy range 1 to 20 keV. The spacecraft will carry two collimator systems of 1 by 10 deg and 10 by 10 deg fullwidth. The proportional counters are gas-filled beryllium window tubes. SAS A is planned for launch in late 1970.


Sign in / Sign up

Export Citation Format

Share Document