scholarly journals High-energy positrons and gamma radiation from decaying constituents of a two-component dark atom model

2015 ◽  
Vol 24 (13) ◽  
pp. 1545004 ◽  
Author(s):  
K. Belotsky ◽  
M. Khlopov ◽  
C. Kouvaris ◽  
M. Laletin

We study a two-component dark matter candidate inspired by the minimal walking technicolor (WTC) model. Dark matter consists of a dominant strongly interactive massive particle (SIMP)-like dark atom component made of bound states between primordial helium nuclei and a doubly charged technilepton and a small WIMP-like component made of another dark atom bound state between a doubly charged technibaryon and a technilepton. This scenario is consistent with direct search experimental findings because the dominant SIMP component interacts too strongly to reach the depths of current detectors with sufficient energy to recoil and the WIMP-like component is too small to cause significant amount of events. In this context, a metastable technibaryon that decays to [Formula: see text], [Formula: see text] and [Formula: see text] can, in principle, explain the observed positron excess by AMS-02 and PAMELA, while being consistent with the photon flux observed by FERMI/LAT. We scan the parameters of the model and we find the best possible fit to the latest experimental data. We find that there is a small range of parameter space that this scenario can be realized under certain conditions regarding the cosmic ray propagation and the final state radiation (FSR). This range of parameters fall inside the region where the current run of large hadron collider (LHC) can probe, and therefore it will soon be possible to either verify or exclude conclusively this model of dark matter.

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 708 ◽  
Author(s):  
Vitaly Beylin ◽  
Maxim Bezuglov ◽  
Vladimir Kuksa ◽  
Egor Tretiakov

The interaction of high-energy leptons with components of Dark Matter in a hypercolor model is considered. The possibility of detection, using IceCube secondary neutrinos produced by quasielastic scattering of cosmic ray electrons off hidden mass particles, is investigated. The dominant contribution to the cross section results from diagrams with scalar exchanges. A strong dependence of the total cross section on the Dark Matter components mass is also found.


2015 ◽  
Vol 30 (28n29) ◽  
pp. 1545009 ◽  
Author(s):  
Chao-Qiang Geng ◽  
Da Huang ◽  
Chang Lai

We review the multi-component decaying dark matter (DM) scenario to explain the possible cosmic ray excesses in the positron fraction, the positron and electron respective fluxes, and the total [Formula: see text] flux observed by AMS-02. We show that the two-component DM model can fit the AMS-02 datasets. In particular, we demonstrate that the heavier DM component with its mass around 1 TeV dominantly decaying through the [Formula: see text] and [Formula: see text]-channels describes the high-energy behavior of the total [Formula: see text] flux data above 500 GeV, while the lighter one of O(100) GeV mainly through the [Formula: see text]-channel explains the substructure around 100 GeV.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Soo-Min Choi ◽  
Jinsu Kim ◽  
Pyungwon Ko ◽  
Jinmian Li

Abstract Multi-component dark matter scenarios are studied in the model with U(1)X dark gauge symmetry that is broken into its product subgroup Z2 × Z3 á la Krauss-Wilczek mechanism. In this setup, there exist two types of dark matter fields, X and Y, distinguished by different Z2 × Z3 charges. The real and imaginary parts of the Z2-charged field, XR and XI, get different masses from the U(1)X symmetry breaking. The field Y, which is another dark matter candidate due to the unbroken Z3 symmetry, belongs to the Strongly Interacting Massive Particle (SIMP)-type dark matter. Both XI and XR may contribute to Y’s 3 → 2 annihilation processes, opening a new class of SIMP models with a local dark gauge symmetry. Depending on the mass difference between XI and XR, we have either two-component or three-component dark matter scenarios. In particular two- or three-component SIMP scenarios can be realised not only for small mass difference between X and Y, but also for large mass hierarchy between them, which is a new and unique feature of the present model. We consider both theoretical and experimental constraints, and present four case studies of the multi-component dark matter scenarios.


2020 ◽  
pp. 655-710
Author(s):  
Hermann Kolanoski ◽  
Norbert Wermes

Astroparticle physics deals with the investigation of cosmic radiation using similar detection methods as in particle physics, however, mostly with quite different detector arrangements. In this chapter the detection principles for the different radiation types with cosmic origin are presented, this includes charged particles, gamma radiation, neutrinos and possibly existing Dark Matter. In the case of neutrinos also experiments at accelerators and reactors are included. Examples, which are typical for the different areas, are given for detectors and their properties. For cosmic ray detection apparatuses are deployed above the atmosphere with balloons or satellites or on the ground using the atmosphere as calorimeter in which high-energy cosmic rays develop showers or in underground areas including in water and ice.


2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
Daniele Gaggero ◽  
Mauro Valli

The quest for the elusive dark matter (DM) that permeates the Universe (and in general the search for signatures of physics beyond the Standard Model at astronomical scales) provides a unique opportunity and a tough challenge to the high energy astrophysics community. In particular, the so-called DMindirect searches—mostly focused on a class of theoretically well-motivated DM candidates such as the weakly interacting massive particles—are affected by a complex astrophysical background of cosmic radiation. The understanding and modeling of such background require a deep comprehension of an intricate classical plasma physics problem, i.e., the interaction between high energy charged particles, accelerated in peculiar astrophysical environments, and magnetohydrodynamic turbulence in the interstellar medium of our galaxy. In this review we highlight several aspects of this exciting interplay between the most recent claims of DM annihilation/decay signatures from the sky and the galactic cosmic-ray research field. Our purpose is to further stimulate the debate about viable astrophysical explanations, discussing possible directions that would help breaking degeneracy patterns in the interpretation of current data. We eventually aim to emphasize how a deep knowledge on the physics of CR transport is therefore required to tackle the DM indirect search program at present and in the forthcoming years.


2011 ◽  
Vol 01 ◽  
pp. 257-265
Author(s):  
XIAO-GANG HE ◽  
TONG LI ◽  
XUE-QIAN LI ◽  
JUSAK TANDEAN ◽  
HO-CHIN TSAI

The standard model (SM) plus a real gauge-singlet scalar field dubbed darkon (SM+D) is the simplest model possessing a weakly interacting massive particle (WIMP) dark-matter candidate. The upper limits for the WIMP-nucleon elastic cross-section as a function of WIMP mass from the recent XENON10 and CDMS II experiments rule out darkon mass ranges from 10 to (50, 70, 75) GeV for Higgs-boson masses of (120, 200, 350) GeV, respectively. This may exclude the possibility of the darkon providing an explanation for the gamma-ray excess observed in the EGRET data. We show that by extending the SM+D to a two-Higgs-doublet model plus a darkon the experimental constraints on the WIMP-nucleon interactions can be circumvented due to suppression occurring at some values of the product tan α tan β, with α being the neutral-Higgs mixing angle and tan β the ratio of vacuum expectation values of the Higgs doublets. We also comment on the implication of the darkon model for Higgs searches at the LHC.


2017 ◽  
Vol 32 (25) ◽  
pp. 1730022 ◽  
Author(s):  
Roland E. Allen ◽  
Aritra Saha

We propose a Higgs-related but spin-[Formula: see text] dark matter candidate with a mass that is comparable to that of the Higgs. This particle is a weakly interacting massive particle (WIMP) with an R-parity of [Formula: see text], but it can be distinguished from a neutralino by its unconventional couplings to W and Z bosons. Other neutral and charged spin-[Formula: see text] particles of a new kind are also predicted at higher energy.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Jan Kalinowski ◽  
Wojciech Kotlarski ◽  
Krzysztof Mȩkała ◽  
Paweł Sopicki ◽  
Aleksander Filip Żarnecki

AbstractAs any $$e^+e^-$$ e + e - scattering process can be accompanied by a hard photon emission from the initial state radiation, the analysis of the energy spectrum and angular distributions of those photons can be used to search for hard processes with an invisible final state. Thus high energy $$e^+e^-$$ e + e - colliders offer a unique possibility for the most general search of dark matter (DM) based on the mono-photon signature. We consider production of DM particles at the International Linear Collider (ILC) and Compact Linear Collider (CLIC) experiments via a light mediator exchange. Detector effects are taken into account within the Delphes fast simulation framework. Limits on the light DM production in a simplified model are set as a function of the mediator mass and width based on the expected two-dimensional distributions of the reconstructed mono-photon events. The experimental sensitivity is extracted in terms of the DM production cross section. Limits on the mediator couplings are then presented for a wide range of mediator masses and widths. For light mediators, for masses up to the centre-of-mass energy of the collider, coupling limits derived from the mono-photon analysis are more stringent than those expected from direct resonance searches in decay channels to SM particles.


2014 ◽  
Vol 29 (37) ◽  
pp. 1440003 ◽  
Author(s):  
Chao-Qiang Geng ◽  
Da Huang ◽  
Lu-Hsing Tsai

We use multi-component decaying dark matter (DM) scenario to explain the possible cosmic ray excesses in the positron fraction recently confirmed by AMS-02 and the total e+ +e- flux observed by Fermi-LAT. In the two-component DM models, we find an interesting variation of the flavor structure along with the cutoff of the heavy DM. For the three-component DM case, we focus on a particular parameter range in which the best fits prefer to open only two DM decay channels with a third DM contributing nothing to the electron and positron spectra. We show that all models give the reasonable fits to both the AMS-02 positron fraction and the Fermi-LAT total e++e- flux, which are also consistent with the measured diffuse γ-ray flux by Fermi-LAT.


Sign in / Sign up

Export Citation Format

Share Document