scholarly journals Theoretical estimates of the width of light-meson states in the SO(4) (2+1)-flavor limit

2018 ◽  
Vol 27 (01) ◽  
pp. 1850001 ◽  
Author(s):  
Tochtli Yépez-Martínez ◽  
Osvaldo Civitarese ◽  
Peter Otto Hess

The low-energy sector of the mesonic spectrum exhibits some features which may be understood in terms of the SO(4) symmetry contained in the QCD-Hamiltonian written in the Coulomb Gauge. In our previous work, we have shown that this is indeed the case when the Instantaneous Color-Charge Interaction (ICCI) is treated by means of nonperturbative many-body techniques. Continuing along this line of description, in this work we calculate the width of meson states belonging to the low portion of the spectrum ([Formula: see text] GeV). In spite of the rather simple structure of the Hamiltonian used to calculate the spectra of pseudoscalar and vector mesons, the results for the width of these states follow the pattern of the data.

2017 ◽  
Vol 26 (12) ◽  
pp. 1750082 ◽  
Author(s):  
D. A. Amor-Quiroz ◽  
T. Yépez-Martínez ◽  
P. O. Hess ◽  
O. Civitarese ◽  
A. Weber

The Tamm–Dancoff Approximation (TDA) and Random Phase Approximation (RPA) many-body methods are applied to an effective Quantum Chromodynamics (QCD) Hamiltonian in the Coulomb gauge. The gluon effects in the low-energy domain are accounted for by the Instantaneous color-Coulomb Interaction between color-charge densities, approximated by the sum of a Coulomb ([Formula: see text]) and a confining linear ([Formula: see text]) potential. We use the eigenfunctions of the harmonic oscillator as a basis for the quantization of the quark fields, and discuss how suitable this basis is in various steps of the calculation. We show that the TDA results already reproduce the gross-structure of the light-flavored meson states. The pion-like state, which in the RPA description is a highly collective state, is in better agreement with the experimental value. The results are related to other nonperturbative treatments and compared to experimental data. We discuss the advantages of the present approach.


Author(s):  
Ladislaus Alexander Bányai

AbstractWe extend the standard solid-state quantum mechanical Hamiltonian containing only Coulomb interactions between the charged particles by inclusion of the (transverse) current-current diamagnetic interaction starting from the non-relativistic QED restricted to the states without photons and neglecting the retardation in the photon propagator. This derivation is supplemented with a derivation of an analogous result along the non-rigorous old classical Darwin-Landau-Lifshitz argumentation within the physical Coulomb gauge.


1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


2007 ◽  
Vol 18 (08) ◽  
pp. 1351-1359 ◽  
Author(s):  
HAYDAR ARSLAN

The structure and energetics of Pd N (N = 5–80) clusters have been studied extensively by a Monte Carlo method based on Sutton–Chen many-body potential. The basin-hopping algorithm is used to find the low-energy minima on the potential energy surface for each nuclearity. A variety of structure types (icosahedral, decahedral and fcc closed-packed) are observed for Pd clusters. Some of the icosahedral global minima do not have a central atom. The resulting structures have been compared with the previous theoretical results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Seung-Hwan Do ◽  
Hao Zhang ◽  
Travis J. Williams ◽  
Tao Hong ◽  
V. Ovidiu Garlea ◽  
...  

AbstractAn ongoing challenge in the study of quantum materials, is to reveal and explain collective quantum effects in spin systems where interactions between different modes types are important. Here we approach this problem through a combined experimental and theoretical study of interacting transverse and longitudinal modes in an easy-plane quantum magnet near a continuous quantum phase transition. Our inelastic neutron scattering measurements of Ba2FeSi2O7 reveal the emergence, decay, and renormalization of a longitudinal mode throughout the Brillouin zone. The decay of the longitudinal mode is particularly pronounced at the zone center. To account for the many-body effects of the interacting low-energy modes in anisotropic magnets, we generalize the standard spin-wave theory. The measured mode decay and renormalization is reproduced by including all one-loop corrections. The theoretical framework developed here is broadly applicable to quantum magnets with more than one type of low energy mode.


2012 ◽  
Vol 524-527 ◽  
pp. 945-948
Author(s):  
Xiu Mei Zhang ◽  
Rui Xin Ma ◽  
Da Wei Wu

Based on the study of normal emulsion process of floatation reagents, the idea which uses Pneumatic injection to spray the floatation reagents is proposed. The paper introduced the structure and the performance of the Pneumatic injection atomizer. More than 24% of the dosages were saved. Pneumatic injection atomizer offers simple structure and low energy consumption, which is 0.388kw/h.It was proved by the diameter results obtained by the laser particle size analyzer that Pneumatic injection atomizer offers good dispersing effect. When the air pressure is 0.08MPa, the average diameter of droplet is 7.89µm.


1974 ◽  
Vol 53 ◽  
pp. 133-150 ◽  
Author(s):  
V. Canuto ◽  
S. M. Chitre

Using the many-body techniques appropriate for quantum crystals it is shown that the deep interior of a neutron star is most likely an orderly arrangement of neutrons, protons and hyperons forming a solid. It is shown that a liquid or gas arrangement would produce higher energy. If so, a neutron star can be viewed as two solids (crust and core) permeated by a layer of ordinary or (perhaps) superfluid liquid. Astronomical evidence is in favor of such a structure: the sudden jumps in the periods of the Crab and Vela pulsars that differ by a factor of ∼ 102 can be easily explained by the star-quake model. If the Crab is less massive than Vela (i.e., if it is not dense enough to have a solid core), the star-quakes take place in the crust whereas for Vela they occur in the core.


Sign in / Sign up

Export Citation Format

Share Document