FRACTAL-BASED ANALYSIS OF THE EFFECT OF MACHINING PARAMETERS ON SURFACE FINISH OF WORKPIECE IN TURNING OPERATION

Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950043 ◽  
Author(s):  
GEEVIN JITHMAL PATHIRANAGAMA ◽  
HAMIDREZA NAMAZI

Analysis of workpiece surface quality is one of the major issues in manufacturing engineering. Turning operation is a famous machining operation that is widely used in machining of materials. In this research, we investigate the surface finish of machined workpiece from turning operation. For this purpose, we employ fractal theory to study the complex structure of machined workpiece’s surface in different conditions. The applied parameters include the variations of cutting depth, feed rate and spindle speed in wet and dry machining conditions. Based on the obtained results, we found the correlation between the increment of fractal dimension of machined surface and the increment of cutting depth, feed rate and spindle speed in wet machining condition. The obtained results will be discussed in relation with the complexity of machined surface. The employed method of analysis in this research can be widely applied to the analysis of the effect of different machining parameters and conditions on the surface quality of machined workpiece in case of different machining operations.

Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950094 ◽  
Author(s):  
CHAI LIP KIEW ◽  
AKSHAYEN BRAHMANANDA ◽  
KH TAUHID ISLAM ◽  
HAO NAM LEE ◽  
SAMUEL ANTHONY VENIER ◽  
...  

Obtaining the optimum surface finish is one of the key factors in machining operations. For this purpose, engineers apply a set of machining parameters to obtain the desired surface quality. On the other hand, tool faces wear during machining operation that itself affects the surface quality of machined surface. Therefore, tool wear and surface finish of machined workpiece should be related to each other. In this research, we employ fractal analysis in order to investigate the correlation between variations of complex structure of machined surface and tool wear in turning operation. In fact, we changed the machining parameters between different experiments and investigated how the machined surface is correlated with the tool wear. Based on the obtained results, we can see the correlation between the complexity of machined surface and tool wear by increasing the depth of cut, spindle speed and feed rate in different experiments. The method of analysis employed in this research can be widely applied to other machining operations in order to find the correlation between the surface quality of machined surface and tool wear.


2019 ◽  
Vol 19 (01) ◽  
pp. 2050006 ◽  
Author(s):  
Muhammad Owais Qadri ◽  
Hamidreza Namazi

Analysis of surface quality of machined workpiece is an important issue in machining of materials. For this purpose, scientists analyze how the texture of machined surface changes due to different conditions. Machine vibration is one of the factors that highly affects the surface quality of machined surface. In this research, we analyze the relation between machine vibration and surface quality of machined workpiece. For this purpose, we employ fractal theory and analyze how the complex structure of machined surface changes with the complex structure of machine vibration signal in case of variations of machining parameters, namely, depth of cut, feed rate and spindle speed, in milling operation. Based on the results, variations of surface quality of machined workpiece are related with the variations of complexity of machine vibration signal. The method of analysis employed in this research can be applied to other machining operations in order to find the relation between machine vibration and surface quality of machined workpiece.


Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950087 ◽  
Author(s):  
ASHFAQ AHAMED ◽  
ATHIF AHAMED ◽  
DILAN KATUWAWALA ◽  
TEOH TIONG EE ◽  
ZI HAN TAN ◽  
...  

Drilling is a famous and widely used machining operation to make holes in the workpiece. The size and surface quality of drilled hole are two factors that should be considered mainly. In this research, we examine the effect of different machining parameters and conditions on the surface quality of generated hole in drilling operation. For this purpose, we employ fractal theory and investigate how the variations of depth of cut and spindle speed affect the complexity of surface texture of drilled holes in wet and dry machining conditions. Based on the obtained results, the increment of depth of cut and spindle speed in case of wet and dry machining causes lower complexity on the generated surface from drilling. In addition, the generated surface from dry machining is more complex than the generated surface from wet machining. The obtained method in this research can be applied to other machining operations in order to investigate the effect of machining parameters and conditions on the surface quality of machined workpiece.


Fractals ◽  
2019 ◽  
Vol 27 (05) ◽  
pp. 1950076 ◽  
Author(s):  
KUSHAL BISSOONAUTH ◽  
HAMIDREZA NAMAZI

Acquiring the desired surface quality is one of the major efforts in machining of materials. Milling operation is a widely used machining operation to shape the material in different forms. Machining parameters and conditions are two major factors that affect the surface quality of machined workpiece in milling operation. In this paper, we analyze the surface finish of machined workpiece under the variations of machining parameters and conditions (wet and dry conditions) in milling operation. For our analysis, we use fractal dimension as the indicator of complexity of structure. Based on the obtained results, in the case of wet machining condition, by increasing the depth of cut, feed rate and spindle speed in separate experiments, the fractal dimension of machined surface increases. However, the obtained results in the case of dry machining condition are not consistent with the variations of different machining parameters. The obtained results will be discussed in terms of complex structure of machined surface. The method of analysis employed in this research can be investigated with other machining operations to check how the machining parameters and conditions affect the surface quality of machined surface.


Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050104
Author(s):  
MUHAMMAD OWAIS QADRI ◽  
HAMIDREZA NAMAZI

Surface finish of machined workpiece is one of the factors to evaluate the performance of machining operations. There are different factors such as machining parameters that affect the surface finish of machined workpiece. Tool wear is an unwanted machining issue that highly affects the surface finish of machined workpiece. In a similar way, different parameters (e.g. cutting speed, feed rate and depth of cut) also affect tool wear. In this research, we investigated how the complex structure of machined workpiece is related to the complex structure of tool wear. For this purpose, we benefited from the fractal analysis. The experiments were conducted based on the variations of machining parameters (depth of cut, feed rate and spindle speed), and accordingly the fractal dimension of machined surface was analyzed versus the fractal dimension of tool wear. Based on the obtained results, the complexity of machined surface is related to the complexity of tool wear. Fractal analysis could be applied to other machining operations to analyze the complex structures of machined surface and tool and potentially make a relationship between them.


2018 ◽  
Vol 932 ◽  
pp. 30-35
Author(s):  
Yan Yan Yan ◽  
Yi Fan Lv ◽  
Jun Li Liu

According to the removal mechanism of ductile regime machining of nanoZrO2 ceramics and the dynamic characteristics of ultrasonic vibration assisted diamond flying cutting (UVADFC), the model of the material removal rate (MRR) of nanoZrO2 ceramics under UVADFC and diamond flying cutting (DFC) have been proposed by infinitesimal method,. In this paper, the experiment of three factors and four levels was carried out to study the relationships between MRR and the machining parameters (cutting depth , spindle speed n and feed rate c). The results of the experiment shows that UVADFC is a cost-effective method which is applied to the machining of nanoZrO2 ceramics, and the MRR of nanoZrO2 ceramics under UVADFC is 1.3-2 times greater than that of DFC, and the degree of the factors significantly influence on the MRR of nanoZrO2 ceramics are feed rate, cutting depth, spindle speed in a sequence whether it is DFC or UVADFC. The results will shed more light on the material removal mechanism of UVADFC.


Author(s):  
Muhammad Pervej Jahan ◽  
Jianfeng Ma ◽  
Craig Hanson ◽  
Greg K Arbuckle

A growing application of polycarbonates is in the microfluidic disks and DNA detection devices, where surface finish of the micro-channels plays an important role. This study intends to investigate the tool wear and surface finish generated during micro slot milling of polycarbonate using uncoated, TiN-coated, and TiAlN-coated tungsten carbide tools. The effects of tool coating and the machining parameters on the possible reduction of tool wear and improvement of surface finish were investigated. It was found that with careful selection of cutting parameters and tool coating, micro-channels with smoother surface finish, minimum burrs around the edges, and controlled tool wear can be obtained using micro-milling. A combination of medium range of depth of cut and feed rate was found to improve the surface finish in polycarbonates, as well as minimize the tool wear. The TiAlN tool coating was found to only be effective in reducing tool wear without much effect on the machined surface. The adhesion was found to be the most dominating tool wear mechanism in uncoated carbide tool, followed by cutting edge chipping and tool nose’s plastic failure. The adhesion wear was found to be reduced in coated tools, especially in TiAlN-coated tools, although delamination wear started to dominate in the coated tools when higher feed rate and depth of cut were used. Both lower and higher of depths of cut were found to generate higher tool wear and leave traces of tool marks on the machined surface.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1174
Author(s):  
Sophal Hai ◽  
Hwa-Chul Jung ◽  
Won-Hyun Shim ◽  
Hyung-Gon Shin

The main objective of the study is to analyze the various cutting parameters to investigate the surface quality of the minor scale diameter of magnesium alloy in the dry turning process using a different tool nose radius (r). The surface roughness (Ra) was gauged, and micro-images produced by scanning electron microscopy (SEM) were reviewed to evaluate the machined surface topography. The analysis of variance (ANOVA), linear regression model and signal-to-noise (S/N) ratio were applied to investigate and optimize the experimental conditions for surface roughness. The study results imply that the feed rate and tool nose radius significantly affected the surface quality, but the spindle speed did not. The linear regression model is valid to forecast the surface roughness. The cutting parameters for optimum surface quality are a combination of a spindle speed of 710 rpm, a feed rate of 0.052 mm/rev and a tool nose radius of 1.2 mm. The machined surface topography contains the feed marks, micro-voids, material side and material debris, but they become smaller and decrease at a lower feed rate, larger tool nose radius and higher spindle speed. These results show the good surface quality of magnesium alloys in a dry turning process, which could be applied in implant, orthopedic and trauma surgery.


2013 ◽  
Vol 845 ◽  
pp. 760-764
Author(s):  
André J. Souza ◽  
Guilherme Cortelini Rosa

Vibration tendency can rise in turning process when selecting a cutting tool with larger nose radius and/or increasing the feed rate. As consequence, it may affect the process performance by reducing the tool-life and causing damage to the machined surface finish. Moreover, the generated surface roughness strongly depends on the relation between feed rate and cutting tool nose radius. The wiper cutting tool is a recent technological advancement which is claimed to allow both the feed rate and the depth of cut to be doubled while maintaining the same surface finish value in comparison with standard tools. Thus, the objective of this paper is to benchmark tool-life of standard and wiper cutting tools in dry finish turning of SAE 4140 steel. The analysis consists of successive measurements of workpiece roughness and tool corner wear after each turning pass while using combined machining parameters for a target roughness average value close to 2 μm with both inserts being used under the manufacturers recommended cutting conditions. It is noted that the two inserts presented good performance both in the workpiece finish and in tool-wear.


Author(s):  
V. Vijayan ◽  
B. Sureshkumar ◽  
G. Sathishkumar ◽  
R. Yokeshwaran

Turning is the machining process carried out to make cylindrical parts. Since the process is economical and the flexibility of turning operation is high, the process has become highly versatile among the industrial scenario. The design of experiments concept along with response surface methodology is used to analyze the machining parameters such as spindle seed, feed rate and depth of cut, of the turning operation. Three levels of spindle speed, feed rate and depth of cut are used as input parameters and their corresponding responses such as material removal rate (M.R.R), surface roughness, feed force, thrust force and cutting force are considered as the output parameters. The main aim of this experimentation process is to identify the optimal process parameters to get high M R R and low surface roughness. During high spindle speed, the M R R is high and vice versa. Surface roughness is high when its corresponding spindle speed and depth of cut is high. A high spindle speed, the chip formation is continuous whereas in medium speed, discontinuous chip is formed. M.R.R is high when spindle speed, depth of cut and feed rate are high.


Sign in / Sign up

Export Citation Format

Share Document