Numerical Analysis of Word Frequencies in Artificial and Natural Language Texts

Fractals ◽  
1997 ◽  
Vol 05 (01) ◽  
pp. 95-104 ◽  
Author(s):  
A. Cohen ◽  
R. N. Mantegna ◽  
S. Havlin

We perform a numerical study of the statistical properties of natural texts written in English and of two types of artificial texts. As statistical tools we use the conventional Zipf analysis of the distribution of words and the inverse Zipf analysis of the distribution of frequencies of words, the analysis of vocabulary growth, the Shannon entropy and a quantity which is a nonlinear function of frequencies of words, the frequency "entropy". Our numerical results, obtained by investigation of eight complete books and sixteen related artificial texts, suggest that, among these analyses, the analysis of vocabulary growth shows the most striking difference between natural and artificial texts. Our results also suggest that, among these analyses, those who give a greater weight to low frequency words succeed better in distinguishing between natural and artificial texts. The inverse Zipf analysis seems to succeed better than the conventional Zipf analysis and the frequency "entropy" better than the usual word entropy. By studying the scaling behavior of both entropies as a function of the total number of words T of the investigated text, we find that the word relative entropy scales with the same functional form for both natural and artificial texts but with a different parameter, while the frequency relative "entropy" decreases monotonically with T for the artificial texts while having a minimum at T≈104 for the natural texts.

1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

2006 ◽  
Vol 63 (7) ◽  
pp. 1859-1877 ◽  
Author(s):  
D. Kondrashov ◽  
S. Kravtsov ◽  
M. Ghil

Abstract This paper constructs and analyzes a reduced nonlinear stochastic model of extratropical low-frequency variability. To do so, it applies multilevel quadratic regression to the output of a long simulation of a global baroclinic, quasigeostrophic, three-level (QG3) model with topography; the model's phase space has a dimension of O(104). The reduced model has 45 variables and captures well the non-Gaussian features of the QG3 model's probability density function (PDF). In particular, the reduced model's PDF shares with the QG3 model its four anomalously persistent flow patterns, which correspond to opposite phases of the Arctic Oscillation and the North Atlantic Oscillation, as well as the Markov chain of transitions between these regimes. In addition, multichannel singular spectrum analysis identifies intraseasonal oscillations with a period of 35–37 days and of 20 days in the data generated by both the QG3 model and its low-dimensional analog. An analytical and numerical study of the reduced model starts with the fixed points and oscillatory eigenmodes of the model's deterministic part and uses systematically an increasing noise parameter to connect these with the behavior of the full, stochastically forced model version. The results of this study point to the origin of the QG3 model's multiple regimes and intraseasonal oscillations and identify the connections between the two types of behavior.


1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli ◽  
P. Benassi ◽  
R. Dell'Anna ◽  
V. Mazzacurati ◽  
G. Ruocco

Author(s):  
Shaowu Ou ◽  
Shixiao Fu ◽  
Wei Wei ◽  
Tao Peng ◽  
Xuefeng Wang

Typically, in some side-by-side offshore operations, the speed of vessels is very low or even 0 and the headings are manually maneuvered. In this paper, the hydrodynamic responses of a two-body system in such operations under irregular seas are investigated. The numerical model includes two identical PSVs (Platform Supply Vessel) as well as the fenders and connection lines between them. A horizontal mooring system constraining the low frequency motions is set on one of the ships to simulate maneuver system. Accounting for the hydrodynamic interactions between two bodies, 3D potential theory is applied for the analysis of their hydrodynamic coefficients. With wind and current effects included, these coefficients are further applied in the time domain simulations in irregular waves. The relevant coefficients are estimated by experiential formulas. Time-varying loads on fenders and connection lines are analyzed. Meanwhile, the relative motions as well as the effects of the hydrodynamic interactions between ships are further discussed, and finally an optimal operation scheme in which operation can be safely performed is summarized.


2004 ◽  
Vol 26 (1) ◽  
pp. 1-10
Author(s):  
Nguyen Dong Anh ◽  
Nguyen Chi Sang

The design of active TMD for multi-degree-of-freedom systems subjected to second order coloured noise excitation is considered using the linear quadratic optimal theory. A detailed numerical study is carried out for a 2-DOF system. It is shown that the effectiveness of active TMD is better than the one of passive TMD.


2018 ◽  
Vol 12 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Julia P. Slopsema ◽  
John M. Boss ◽  
Lane A. Heyboer ◽  
Carson M. Tobias ◽  
Brooke P. Draggoo ◽  
...  

Background: Electrical stimulation is increasingly relevant in a variety of medical treatments. In this study, surface electrical stimulation was evaluated as a method to non-invasively target a neural function, specifically natural sensation in the distal limbs. Method: Electrodes were placed over the median and ulnar nerves at the elbow and the common peroneal and lateral sural cutaneous nerves at the knee. Strength-duration curves for sensation were compared between nerves. The location, modality, and intensity of each sensation were also analyzed. In an effort to evoke natural sensations, several patterned waveforms were evaluated. Results: Distal sensation was obtained in all but one of the 48 nerves tested in able-bodied subjects and in the two nerves from subjects with an amputation. Increasing the pulse amplitude of the stimulus caused an increase in the area and magnitude of the sensation in a majority of subjects. A low frequency waveform evoked a tapping or tapping-like sensation in 29 out of the 31 able-bodied subjects and a sensation that could be considered natural in two subjects with an amputation. This waveform performed better than other patterned waveforms that had proven effective during implanted extra-neural stimulation. Conclusion: Surface electrical stimulation has the potential to be a powerful, non-invasive tool for activation of the nervous system. These results suggest that a tapping sensation in the distal extremity can be evoked in most able-bodied individuals and that targeting the nerve trunk from the surface is a valid method to evoke sensation in the phantom limb of individuals with an amputation for short term applications.


1996 ◽  
Vol 39 (3) ◽  
Author(s):  
F. Fanucci ◽  
A. Megna ◽  
S. Santini ◽  
F. Vetrano

In the framework of a cylindrical symmetry model for convective motions in the asthenosphere, a new profile for the viscosity coefficient depending on depth is suggested here. The numerical elaboration of the above mentioned model leads to interesting results which fit well with experimental observations. In particular these continuously varying viscosity solutions probably describe the convective motions within the Earth better than simple constant viscosity solutions. Consequently the temperature values seem to be a realistic representation of the possible thermal behaviour in the upper mantle.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Ali Abolfathi ◽  
M. J. Brennan ◽  
T. P. Waters ◽  
B. Tang

Nonlinear isolators with high-static-low-dynamic-stiffness have received considerable attention in the recent literature due to their performance benefits compared to linear vibration isolators. A quasi-zero-stiffness (QZS) isolator is a particular case of this type of isolator, which has a zero dynamic stiffness at the static equilibrium position. These types of isolators can be used to achieve very low frequency vibration isolation, but a drawback is that they have purely hardening stiffness behavior. If something occurs to destroy the symmetry of the system, for example, by an additional static load being applied to the isolator during operation, or by the incorrect mass being suspended on the isolator, then the isolator behavior will change dramatically. The question is whether this will be detrimental to the performance of the isolator and this is addressed in this paper. The analysis in this paper shows that although the asymmetry will degrade the performance of the isolator compared to the perfectly tuned case, it will still perform better than the corresponding linear isolator provided that the amplitude of excitation is not too large.


2013 ◽  
Vol 641-642 ◽  
pp. 371-376 ◽  
Author(s):  
Shi Sha Zhu ◽  
Xue Peng Qian ◽  
Hao He ◽  
Quan Fu Zhang

When the Electrorheological elastomer (ERE) is embedded into intelligence structure system, the structure damping and stiffness of the system can be changed quickly and reversibly under an external electric field. Thus, the application of the Electrorheological elastomer in the active and passive hybrid control of structural vibration has already attracted people's wide attention. In this paper, three types of ER elastomer were prepared based on barium titanate, starch, then the microstructure of ER elastomer was observed and the mechanical properties were analyzed; a shear mode ERE shock absorber was designed, the vibration response performance of which was experimentally evaluated under various excitation frequency with or without the applied field. The experimental results showed that the damping and stiffness of the shock absorber could be modified with a changing external electric field, whose macro-features was that the damping coefficient increased with the increase of the electric field, and the damping effect in the high frequency was better than in the low frequency.


Sign in / Sign up

Export Citation Format

Share Document