ON THE STRUCTURE, ELECTRICAL AND OPTICAL PROPERTIES OF TiO2 SPUTTERED THIN FILMS

2006 ◽  
Vol 13 (01) ◽  
pp. 87-92 ◽  
Author(s):  
A. ASHOUR

Titanium oxide thin films were prepared by sputtering technique onto glass substrates at room temperature (RT). The structure of the films was confirmed using X-ray diffraction (XRD) and revealed the stoichiometry with an O and Ti ratio of 2. The deposited films at RT were found to be amorphous and the films annealed at 300 and 400°C for 2 h were crystalline with orthorhombic structure. The lattice constants and grain size of the film are calculated. The electrical resistivity was found to depend on the film thickness and decreased with increasing the film thicknesses. The optical constants of the films such as the refractive index, extinction coefficient, and absorption coefficient were also determined using the optical transmittance measurements, and the results were discussed. The optical band gap varies from 3.2 to 3.5 eV as a function of oxygen/argon ratios.

2018 ◽  
Vol 24 (8) ◽  
pp. 5700-5702
Author(s):  
T. C. M Santhosh ◽  
Kasturi V Bangera ◽  
G. K Shivakumar

CdSe thin films have been deposited on glass substrates at 453 K and subjected to post-deposition annealing. The effect of annealing on the properties of thermally evaporated CdSe thin films has been studied in detail. Structural and compositional studies have been carried out using X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDX) techniques. It is observed that as-deposited CdSe as well as annealed CdSe thin films exhibits hexagonal structure. The grain size was found to increase marginally with an increase in the annealing duration. The optical band gap of the grown films was evaluated from absorption measurements found to be 1.67 eV. An improvement in photoconductivity has been observed for annealed films.


2009 ◽  
Vol 68 ◽  
pp. 69-76 ◽  
Author(s):  
S. Thanikaikarasan ◽  
T. Mahalingam ◽  
K. Sundaram ◽  
Tae Kyu Kim ◽  
Yong Deak Kim ◽  
...  

Cadmium iron selenide (Cd-Fe-Se) thin films were deposited onto tin oxide (SnO2) coated conducting glass substrates from an aqueous electrolytic bath containing CdSO4, FeSO4 and SeO2 by potentiostatic electrodeposition. The deposition potentials of Cadmium (Cd), Iron (Fe), Selenium (Se) and Cadmium-Iron-Selenide (Cd-Fe-Se) were determined from linear cathodic polarization curves. The deposited films were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by x-rays (EDX) and optical absorption techniques, respectively. X-ray diffraction patterns shows that the deposited films are found to be hexagonal structure with preferential orientation along (100) plane. The effect of FeSO4 concentration on structural, morphological, compositional and optical properties of the films are studied and discussed in detail.


2018 ◽  
Vol 21 (1) ◽  
pp. 015-019
Author(s):  
P. Jeyakumar ◽  
S. Thanikaikarasan ◽  
B. Natarajan ◽  
T. Mahalingam ◽  
Luis Ixtlilco

Copper Telluride thin films have been prepared on Fluorine doped Tin Oxide coated conducting glass substrates using electrodeposition technique. Cyclic voltammetric analysis has been carried out to analyze the growth mechanism of the deposited films. Thickness value of the deposited films has been estimated using Stylus profilometry. X-ray diffraction pattern revealed that the prepared films possess polycrystalline in nature. Microstructural parameters such as crystallite size, strain and dislocation density are evaluated using observed X-ray diffraction data. Optical absorption analysis showed that the prepared films are found to exhibit band gap value around 2.03 eV.


2014 ◽  
Vol 28 (26) ◽  
pp. 1450210 ◽  
Author(s):  
Zhong Hua ◽  
Xiangcheng Meng ◽  
Yaming Sun ◽  
Wanqiu Yu ◽  
Dong Long

The stacked precursors were deposited on glass substrates from Cu , Sn and ZnS targets by magnetron sputtering with six kinds of stacking sequences. The precursors were sulfurized at 500°C for 2 h in an atmosphere of sulfur. The properties of thin films such as microstructure, morphology, chemical composition, electrical and optical properties of the films were investigated by X-ray diffraction (XRD), scanning election microscopy (SEM), energy dispersive spectroscopy (EDS), Hall effect measurements and UV-visible spectrophotometer (UV-VIS). The results show that the thin film after sulfurizing at 500°C using the stacking order of Cu / Sn / ZnS /glass is the best absorber layer for Cu 2 ZnSnS 4 thin films solar cell among the six kinds of stacking sequences.


2005 ◽  
Vol 905 ◽  
Author(s):  
Cleva Ow-Yang ◽  
Hyo-Yong Yeom ◽  
Burag Yaglioglu ◽  
David C. Paine

AbstractAmorphous ZITO films were deposited by dc magnetron sputtering onto glass substrates from ceramic oxide targets containing Zn:In:Sn cation ratios of 1:2:1 and 1:2:1.5. The microstructure, carrier density, mobility, and resistivity of as-deposited and annealed samples were evaluated using x-ray diffraction and Hall effect measurements. The as-deposited films were amorphous and remained so after annealing at 200°C in air for up to five hours. Transmissivity of the films exceeded 80% in the visible spectral region. The minimum resistivity value (7.6×10−4 Ω-cm) was obtained from thin films deposited using the 1:2:1 composition target and a substrate temperature of 300°C.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 985-988 ◽  
Author(s):  
N. S. DAS ◽  
K. K. CHATTOPADHYAY ◽  
B. SAHA ◽  
R. THAPA

Undoped and phosphorus doped nanocrystalline nickel oxide thin films have been synthesized on silicon and glass substrates by RF magnetron sputtering technique in pure Ar atmosphere. Proper phase formation was confirmed by X-ray diffraction analysis. Energy band gaps were determined using UV-Vis spectra. Formation of NiO nanoparticle of dimension ~15 nm was confirmed using HRTEM. Doping of phosphorus as an impurity was confirmed from EDX spectra and XPS studies. Spectroscopic ellipsometric studies were performed on such films and the spectra were analyzed with a suitable model. Optical constants were determined and refractive indices were found to increase with increase of phosphorus doping percentages.


2014 ◽  
Vol 606 ◽  
pp. 15-18
Author(s):  
Falah I. Mustafa ◽  
Mooroj Ali

InxSe1-x(x = 0.4, 0.5, 0.6) thin films are deposited at room temperature on glass substrates with thickness ~500nm by thermal evaporation technique. The X-Ray diffraction analysis showed that both the as-deposited films In2Se3and InSe (x= 0.4 and 0.5) are amorphous in nature while the as-deposited film In3Se2is polycrystalline and the values of energy gap are Eg=1.44eV for In2Se3, Eg=1.16eV for InSe and Eg=0.78eV for In3Se2. The same technique used with insert Argon gas at pressure 0.1 mbar where InxSe1-x(x = 0.4, 0.5, 0.6) thin films are deposited at room temperature on glass substrates with thickness ~100nm. The X-Ray diffraction analysis showed that the as-deposited films In2Se3are amorphous in nature while the as-deposited film InSe and In3Se2are Nanocrystalline with grain size 33nm and 55nm respectively and the values of energy gap are Eg=1.55eV for InSe and Eg=1.28eV for In3Se2. The energy gap of InSe thin films increase with Argon gas assist and phases changes from amorphous and polycrystalline to nanostructure material by thermal vacuum deposition technique.


2014 ◽  
Vol 32 (4) ◽  
pp. 729-736 ◽  
Author(s):  
Weronika Izydorczyk ◽  
Krzysztof Waczyński ◽  
Jacek Izydorczyk ◽  
Paweł Karasiński ◽  
Janusz Mazurkiewicz ◽  
...  

AbstractSnO2 nanocrystalline thin films have been deposited on oxidized silicon substrates by spin-coating from a precursor solution, followed by slow thermal annealing in oxygen atmosphere at different temperatures (500 to 900 °C). The precursor solution consisted of 1.0 to 2.0 M SnCl4·5H2O in isopropanol. It was shown that the concentration of the precursor solution, annealing temperature and heating rate had a significant effect on the structural, optical and electrical properties of the studied thin films. The topography of SnO2 thin films was examined by scanning electron microscopy (SEM). Furthermore, as-deposited films were characterized by X-ray diffraction (XRD), UV-Vis and impedance spectroscopy.


2016 ◽  
Vol 675-676 ◽  
pp. 181-184 ◽  
Author(s):  
Nirun Witit-Anun ◽  
Amphol Teekhaboot

Titanium chromium nitride (TiCrN) thin films were deposited by reactive DC magnetron co-sputtering. The effect of Ti sputtering current (ITi) on the structure of the TiCrN thin films were investigated. The crystal structure, microstructure, thickness, roughness and elemental composition were characterized by glancing angle X-ray diffraction (GAXRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDS) technique, respectively. The results showed that, all the as-deposited films were formed as a (Ti,Cr)N solid solution. The as-deposited films exhibited a nanostructure with a crystallite size of less than 40 nm. The crystal size decreased from 39.9 nm to 33.5 nm, while the lattice constants increased from 4.139 Å to 4.162 Å, with increasing of the Ti sputtering current. The film thickness and roughness were found to increase from 397 nm to 615 nm and 3.7 nm to 6.3 nm, respectively, with increasing of the Ti sputtering current. The composition of the as-deposited films varied with the Ti sputtering current. Cross section analysis by FE-SEM showed compact columnar and dense morphology as a result of increasing the Ti sputtering current.


2020 ◽  
Vol 20 (5) ◽  
pp. 3131-3139 ◽  
Author(s):  
Srividhya Ganesan ◽  
Abinaya Muruganandham ◽  
Veena Mounasamy ◽  
Veera Prabu Kannan ◽  
Sridharan Madanagurusamy

To date, reports on metal oxide semiconductors for selective detection of dimethylamine (DMA) is in scarce. Hence in our study, we report titanium oxide (TiO2) as a promising candidate for tuned selectivity towards DMA. Highly uniform TiO2 thin films were successfully deposited on glass substrates using reactive dc magnetron sputtering at various substrate temperatures. Polycrystalline nature of rutile TiO2 was confirmed by X-ray diffraction technique (XRD). The uniform surface morphology of the sputtered TiO2 thin films was revealed by Field Emission Scanning Electron Microscopy (FESEM). An upsurge in optical band gap from 3.18 to 3.4 eV was observed with increase in substrate temperature. The sensing studies of the sputtered TiO2 thin films exhibited a significant sensor response towards the lower concentration of DMA at ambient temperature. It is deemed that this work will provide an insight to develop DMA sensors based on TiO2 thin films.


Sign in / Sign up

Export Citation Format

Share Document