scholarly journals THE SURFACE- AND SIZE-DEPENDENT ELASTIC MODULI OF NANOSTRUCTURES

2007 ◽  
Vol 14 (04) ◽  
pp. 667-670 ◽  
Author(s):  
JIAN-GANG GUO ◽  
YA-PU ZHAO

A theoretical model is presented to investigate the size-dependent elastic moduli of nanostructures with the effects of the surface relaxation surface energy taken into consideration. At nanoscale, due to the large ratios of the surface-to-volume, the surface effects, which include surface relaxation surface energy, etc., can play important roles. Thus, the elastic moduli of nanostructures become surface- and size-dependent. In the research, the three-dimensional continuum model of the nanofilm with the surface effects is investigated. The analytical expressions of five nonzero elastic moduli of the nanofilm are derived, and then the dependence of the elastic moduli is discussed on the surface effects and the characteristic dimensions of nanofilms.

2008 ◽  
Vol 15 (05) ◽  
pp. 599-603 ◽  
Author(s):  
JIAN-GANG GUO ◽  
LI-JUN ZHOU ◽  
YA-PU ZHAO

The effective elastic modulus and fracture toughness of the nanofilm were derived with the surface relaxation and the surface energy taken into consideration by means of the interatomic potential of an ideal crystal. The size effects of the effective elastic modulus and fracture toughness were discussed when the thickness of the nanofilm was reduced. And the dependence of the size effects on the surface relaxation and surface energy was also analyzed.


2017 ◽  
Vol 84 (6) ◽  
Author(s):  
Yin Yao ◽  
Yazheng Yang ◽  
Shaohua Chen

The size effect of nanoporous materials is generally believed to be caused by the large ratio of surface area to volume, so that it is also called surface effect. Based on a recently developed elastic theory, in which the surface effect of nanomaterials is characterized by the surface energy density, combined with two micromechanical models of composite materials, the surface effect of nanoporous materials is investigated. Closed-form solutions of both the effective bulk modulus and the effective shear one of nanoporous materials are achieved, which are related to the surface energy density of corresponding bulk materials and the surface relaxation parameter of nanomaterials, rather than the surface elastic constants in previous theories. An important finding is that the enhancement of mechanical properties of nanoporous materials mainly results from the compressive strain induced by nanovoid's surface relaxation. With a fixed volume fraction of nanovoids, the smaller the void size, the harder the nanoporous material will be. The results in this paper should give some insights for the design of nanodevices with advanced porous materials or structures.


1992 ◽  
Vol 114 (2) ◽  
pp. 227-231 ◽  
Author(s):  
R. Hsu ◽  
T. W. Secomb

A theoretical model is used to analyze oxygen transport in a three-dimensional tissue region containing an arteriole surrounded by an array of capillaries in planes perpendicular to the arteriole. Convective removal of oxygen from the vicinity of the arteriole by nearby capillaries is shown to increase diffusive oxygen loss from the arteriole. This effect depends on the locations of the capillaries, particularly those nearest to the arteriole. The arteriolar oxygen efflux is comparable to that predicted by a previous model which used a continuum approach, but the efflux does not increase with increasing perfusion as rapidly as predicted by the continuum model. Even a small capillary flow rate strongly influences the oxygen field surrounding the arteriole.


2007 ◽  
Vol 14 (04) ◽  
pp. 661-665 ◽  
Author(s):  
ZHENYU YANG ◽  
YA-PU ZHAO

Size-dependent elastic properties of Ni nanofilms are investigated by molecular dynamics (MD) simulations with embedded atom method (EAM). The surface effects are considered by calculating the surface relaxation, surface energy, and surface stress. The Young's modulus and yield stress are obtained as functions of thickness and crystallographic orientation. It is shown that the surface relaxation has important effects on the the elastic properties at nanoscale. When the surface relaxation is outward, the Young's modulus decreases with the film thickness decreasing, and vice versa. The results also show that the yield stresses of the films increase with the films becoming thinner. With the thickness of the nanofilms decreasing, the surface effects on the elastic properties become dominant.


2006 ◽  
Vol 924 ◽  
Author(s):  
Shih-Hsiang Chang ◽  
I-Ling Chang

ABSTRACTA semi-continuum model is constructed to study the size effects on the mechanical properties of face-cubic-center crystal structure nanofilms. Unlike the classical continuum theory, the current model directly takes the discrete nature in the thickness direction into consideration. In-plane and out-plane Poisson's ratios as well as in-plane Young's modulus are investigated with this model. It is found that the values of the Young's modulus and Poisson's ratio depend on the film thickness and approach the respective bulk values asymptotically.


2018 ◽  
pp. 14-18
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

To simulate echoes from the earth’s surface in the low flight mode, it is necessary to reproduce reliably the delayed reflected sounding signal of the radar in real time. For this, it is necessary to be able to calculate accurately and quickly the dependence of the distance to the object being measured from the angular position of the line of sight of the radar station. Obviously, the simplest expressions for calculating the range can be obtained for a segment or a plane. In the text of the article, analytical expressions for the calculation of range for two-dimensional and three-dimensional cases are obtained. Methods of statistical physics, vector algebra, and the theory of the radar of extended objects were used. Since the calculation of the dependence of the range of the object to the target from the angular position of the line of sight is carried out on the analytical expressions found in the paper, the result obtained is accurate, and due to the relative simplicity of the expressions obtained, the calculation does not require much time.


Author(s):  
Xiaoqiao Li ◽  
Linming Zhou ◽  
Han Wang ◽  
Dechao Meng ◽  
Guannan Qian ◽  
...  

Crystalline materials are routinely produced via high-temperature synthesis and show size-dependent properties; however, a rational approach to regulating their crystal growth has not been established. Here we show that dopants...


2003 ◽  
Vol 93 (2) ◽  
pp. 1212-1218 ◽  
Author(s):  
C. T. Sun ◽  
Haitao Zhang

Sign in / Sign up

Export Citation Format

Share Document