SYNTHESIS AND SURFACE PROPERTIES STUDIES ON BAMBOO CHARCOAL/ZnO NANOCOMPOSITE BY USING LOW-TEMPERATURE PLASMA

2017 ◽  
Vol 24 (03) ◽  
pp. 1750032
Author(s):  
K. VIGNESH ◽  
K. A. VIJAYALAKSHMI ◽  
N. KARTHIKEYAN

In this work we synthesize bamboo charcoal (BC)/ZnO nanocomposite by sol–gel technique. The synthesized BC/ZnO nanocomposite is surface modified by atmospheric air and oxygen plasma to improve the surface functional properties. The structure and morphology of the resultant nanocomposite are analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDAX) and ultraviolet–visible spectroscopy (UV–vis) and its antibacterial behavior is analyzed by the disc diffusion plate technique. We obtained new bonds in FTIR results on BC/ZnO nanocomposite after oxygen plasma treatment. From SEM results we observed there was a plasma etching process that occurred on the resulting BC/ZnO nanocomposite after plasma treatment. Significantly, the antimicrobial behavior also increased after oxygen plasma treatment.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Raita Goseki ◽  
Tomoyasu Hirai ◽  
Masa-aki Kakimoto ◽  
Teruaki Hayakawa

Arrays of iron oxides as precursors of iron clusters were prepared by oxygen plasma treatment of block copolymer microphase-separated nanostructures in thin films. Block copolymers composed of ferrocene-containing and silsesquioxane-containing polymethacrylate (PMAPOSS-b-PMAHFC) were successfully prepared, with different molecular weights and compositions and narrow molecular weight distributions, by living anionic polymerization. The formed microphase-separated nanostructures in the bulk were characterized by wide- and small-angle X-ray scattering (WAXS and SAXS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Thin films were prepared from a solution of PMAPOSS-b-PMAHFC in tetrahydrofuran by spin coating onto silicon wafers. Fingerprint-type line nanostructures were formed in the PMAPOSS-b-PMAHFCs thin films after solvent annealing with carbon disulfide. Oxygen plasma treatment provided the final line arrays of iron oxides based on the formed nanostructural patterns.


2010 ◽  
Vol 148-149 ◽  
pp. 893-896 ◽  
Author(s):  
Ze Yang Zhang ◽  
Xiang Xuan Liu ◽  
You Peng Wu

M-typical SrFe12O19 ferrites and FeNi3 nanoplatelets were successfully prepared by the sol-gel method and solution phase reduction method, respectively. The crystalline and morphology of particles were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The composite coatings with SrFe12O19 ferrites and FeNi3 nanoplatelets in polyvinylchloride matrix were prepared. The microwave absorption properties of these coatings were investigated in 2-18GHz frequency range. The results showed that the M-typical SrFe12O19 ferrites and FeNi3 nanoplatelets were obtained and they presented irregular sheet shapes. With the increase of the coating thickness, the absorbing peak value moves to the lower frequency. The absorbing peak values of the wave increase along with the increasing of the content of FeNi3 nanoplatelets filling fraction. When 40% SrFe12O19 ferrites is doped with 20% mass fraction FeNi3 nanoplatelets to prepare composite with 1.5mm thickness, the maximum reflection loss is -24.8 dB at 7.9GHz and the -10 dB bandwidth reaches 3.2GHz.


2018 ◽  
Vol 41 (3-4) ◽  
pp. 53-62 ◽  
Author(s):  
Behnaz Lahijani ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

Abstract In this work, the PbFe12O19 nanoparticles were prepared by the simple and optimized precipitation method with different organic surfactants and capping agents. In the next step, the TiO2 nanoparticles were synthesized using the sol-gel method. At the final step, the PbFe12O19-TiO2 nanocomposites were prepared via the sol-gel method. The effect of the precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The results obtained by the vibrating sample magnetometer show the magnetic properties of the ferrite nanostructures. The photocatalytic effect of the PbFe12O19-TiO2 nanocomposite on the elimination of the azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation was evaluated. The results indicate that the prepared nanocomposites have acceptable magnetic and photocatalytic performance.


2005 ◽  
Vol 475-479 ◽  
pp. 2275-2278 ◽  
Author(s):  
Rui Feng Yang ◽  
Yu Zhen Lv ◽  
Yahui Zhang ◽  
Chen Min Liu ◽  
Lin Guo

Fe3O4 nanoparticles were simply prepared by a wet chemical solution method. In this method, poly (N-vinyl-2-pyrrolidone) (PVP) was used as surface modified reagent to control the shape of the product. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the asprepared Fe3O4 nanoparticles. Furthermore, the magnetic properties of the sample were investigated by a VSM (vibrating sample magnetometer) technique.


Langmuir ◽  
2002 ◽  
Vol 18 (23) ◽  
pp. 9048-9053 ◽  
Author(s):  
Jianguo Huang ◽  
Izumi Ichinose ◽  
Toyoki Kunitake ◽  
Aiko Nakao

1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
C. Massard ◽  
S. Pairis ◽  
V. Raspal ◽  
Y. Sibaud ◽  
K. O. Awitor

The feasibility of surface nanopatterning with TiO2nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO) template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM). The TiO2nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM) with selected area electron diffraction (SAED) were used to investigate the TiO2structure. The optical properties were studied using UV-Vis spectroscopy.


2007 ◽  
Vol 22 (5) ◽  
pp. 1182-1187
Author(s):  
Amita Verma ◽  
A.K. Srivastava ◽  
N. Karar ◽  
Harish Chander ◽  
S.A. Agnihotry

Nanostructured thermally treated xerogels have been synthesized using a sol-gel process involving cerium (Ce) chloride heptahydrate and titanium (Ti) propoxide mixed in different Ce:Ti molar ratios. Structural features of the xerogels have been correlated with their photoluminescence (PL) response. The crystallite sizes in the samples lie in the nanorange. The x-ray diffraction and transmission electron microscopy results have confirmed the coexistence of CeO2 and TiO2 nanocrystallites in these xerogels. In general, a decrease in the CeO2 crystallite size and an increase in the TiO2 crystallite size are observed in the xerogels as a function of Ti content. Scanning electron microscopy results have evidenced the evolution of ordered structure in the xerogels as a function of TiO2 content. Although both of the phases (CeO2 and TiO2) have exhibited PL in ultraviolet and visible regions, the major luminescence contribution has been made by the CeO2 phase. The largest sized CeO2 crystallites in 1:1 thermally treated xerogel have led to its highest PL response. PL emission in the xerogels is assigned to their nanocrystalline nature and oxygen vacancy-related defects.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
B. Sadeghi ◽  
R. Sarraf-Mamoory ◽  
H. R. Shahverdi

LiMn2O4spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles was modified by nanostructured LiFePO4via sol gel dip coating method. Synthesized products were characterized by thermally analyzed thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). The results of electrochemical tests showed that the charge/discharge capacities improved and charge retention of battery enhanced. This improved electrochemical performance is caused by LiFePO4phosphate layer on surfaces of LiMn2O4cathode particles.


Sign in / Sign up

Export Citation Format

Share Document