scholarly journals Magnetic PbFe12O19-TiO2 nanocomposites and their photocatalytic performance in the removal of toxic pollutants

2018 ◽  
Vol 41 (3-4) ◽  
pp. 53-62 ◽  
Author(s):  
Behnaz Lahijani ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

Abstract In this work, the PbFe12O19 nanoparticles were prepared by the simple and optimized precipitation method with different organic surfactants and capping agents. In the next step, the TiO2 nanoparticles were synthesized using the sol-gel method. At the final step, the PbFe12O19-TiO2 nanocomposites were prepared via the sol-gel method. The effect of the precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The results obtained by the vibrating sample magnetometer show the magnetic properties of the ferrite nanostructures. The photocatalytic effect of the PbFe12O19-TiO2 nanocomposite on the elimination of the azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation was evaluated. The results indicate that the prepared nanocomposites have acceptable magnetic and photocatalytic performance.

2016 ◽  
Vol 254 ◽  
pp. 200-206 ◽  
Author(s):  
Catalina Nuțescu Duduman ◽  
María Isabel Barrena Pérez ◽  
José Maria Gómez de Salazar ◽  
Ioan Carcea ◽  
Daniela Lucia Chicet ◽  
...  

Nanostructured SnO2 was prepared based on the sol-gel method used in the preparation of crystalline metal oxides. Sol-gel process can be described as a forming network of oxide polycondensation reaction of a molecular precursor in a liquid. Six experiments were carried out. Morphological structures and chemical composition were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) after calcination. It is noted that TEM images show that the spheres consist from nanocrystals, quantitative EDS analysis of the chemical composition shows an absence of the chlorine, which is a desired fact. For structural characterization of the material we used X-Ray Diffraction (XRD). The X-ray diffraction pattern for all samples indicates peaks which are agreeable with standard diffraction pattern of SnO2. The particle size of all samples was in the range of 28-92 nm calculated according to Scherrer equation.


2017 ◽  
Vol 31 (12) ◽  
pp. 1750083 ◽  
Author(s):  
Nandeibam Nilima ◽  
Mamata Maisnam ◽  
Sumitra Phanjoubam

Li–Ni–Co ferrite samples with compositional formula Li[Formula: see text]Ni[Formula: see text]Co[Formula: see text]Fe[Formula: see text]O4 with [Formula: see text] ranging from 0.00 to 0.1 in steps of 0.02 were prepared by sol–gel method. X-ray diffraction (XRD) analysis confirmed the formation of single phase with spinel structure in all the samples. The lattice constant evaluated from XRD data was found to increase with increase of Co[Formula: see text] substitution and crystallite size was observed in the range of 30–59 nm. The microstructure of the samples was studied by using scanning electron microscopy (SEM). Nanocrystalline nature of ferrites was also confirmed by transmission electron microscopy (TEM). [Formula: see text]–[Formula: see text] measurements were made using a vibrating sample magnetometer and hysteresis parameters such as saturation magnetization and coercivity were obtained for all compositions. The frequency variations of initial permeability and permeability loss showed a dispersive behavior for all compositions and an increase in initial permeability is observed with increase of Co[Formula: see text] substitution. The results obtained and mechanisms involved are discussed in the paper.


Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


2004 ◽  
Vol 03 (06) ◽  
pp. 749-755 ◽  
Author(s):  
YING LI ◽  
SUO HON LIM ◽  
TIM WHITE

The properties influencing the photocatalytic activity of TiO 2 particles have been suggested to include the surface area, crystallinity, crystallite size and crystal structure. Therefore, manipulation of the microstructure of titania, especially of nanocrystalline powders, is very important in the preparative process. In this study, nanocrystalline TiO 2 powders with controlled particle size and phase composition were synthesized at low temperature (<80°C) by a modified sol–gel method. The effects of gelation temperature were systematically investigated. It was found that this parameter played a critical role in determining the crystallinity of single phase anatase. With increasing gelation temperature, the crystallinity of anatase improved initially and then decreased if the temperature was raised to 80°C. These nanomaterials were characterized comprehensively by powder X-ray diffraction (including Rietveld analysis), high-resolution transmission electron microscopy, DSC/TGA thermal analysis and UV–Vis spectrometry.


2002 ◽  
Vol 17 (3) ◽  
pp. 590-596 ◽  
Author(s):  
G. Ennas ◽  
M. F. Casula ◽  
G. Piccaluga ◽  
S. Solinas ◽  
M. P. Morales ◽  
...  

γ–Fe2O3/SiO2 and Fe/SiO2 nanocomposites, with a Fe/Si molar ratio of 0.25, were prepared by the sol-gel method starting from ethanolic solutions of tetraethoxysilane and iron (III) nitrate. After gelation the xerogels were oxidated or reduced. Samples were investigated by transmission electron microscopy, x-ray diffraction, differential scanning calorimetry, and thermogravimetry. Magnetic properties of the samples were investigated at room temperature (RT) and at 77 K. Nanometric particles supported in the silica matrix were obtained in all cases. Bigger particles (10 nm) were obtained in the case of Fe/SiO2 nanocomposites with respect to the γ–Fe2O3/SiO2 samples (5–8 nm). A slight effect of sol dilution on particle size was observed only in the case of γ–Fe2O3/SiO2 nanocomposites. A superparamagnetic behavior was shown at RT only by γ–Fe2O3/SiO2 nanocomposites. Iron-based composites exhibited coercivity values higher than 700 Oe at RT.


2007 ◽  
Vol 280-283 ◽  
pp. 839-844
Author(s):  
Hui Qing Fan

Relaxor-based 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) thin films were grown epitaxially on silicon substrates by sol-gel method and PbO cover coat technique, and investigated by x-ray diffraction, auger electron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The phase development and microstrure evolution of the PMN-PT film were significantly affected by the final annealing temperature and time. A perovskite PMN-PT film was obtained after annealing at 850oC for 1 min. Then, highly <100>-oriented and textured PMN-PT films could be achieved by using a LaNiO3 perovskite template.


2013 ◽  
Vol 750-752 ◽  
pp. 1836-1839
Author(s):  
Gui Qin Hou ◽  
Shui Jing Gao ◽  
Wen Li Zhang

The nanocomposite films with different ZnO:Fe2O3 ratio was prepared by Sol-Gel method on slides glass, Its structure performance was characterized by XRD, SEM, and the photocatalytic performance of different ZnO: Fe2O3 ratio films was investigated. The results showed that: the three layers film that with Zn: Fe ratio was 1:2, had the best photocatalytic effect.


2021 ◽  
Author(s):  
V Maphiri ◽  
L Melato ◽  
Mhlongo ◽  
TT Hlatshwayo ◽  
TE Motaung ◽  
...  

Abstract Un-doped and ZnAlxO(1.5x + 1):0.1% Tb3+ (ZAOT) nano-powders were synthesized via citrate sol-gel method. The Alx moles were varied in the range of 0.25 ≤ x ≤ 5.0. The X-ray powder diffraction (XRD) data revealed that for the x < 1.5, the prepared samples crystal structure consists of mixed phases of the cubic ZnAl2O4 and hexagonal ZnO phases, while for the x ≥ 1.5 the structure consists of single phase of cubic ZnAl2O4. This was confirmed by the Raman and Fourier-Transform Infrared (FTIR) vibrational spectroscopy. Scanning electron microscopy (SEM) showed that varying Alx moles influences the morphology while Transmission electron microscopy (TEM) shows the dual morphology at x < 1.5. The photoluminescence (PL) revealed intense and distinct emissions attributed to both the host and Tb3+ transitions. The emission intensity highly depends on the Alx moles. The International Commission on Illumination (CIE) colour chromaticity showed that the emission colour could be tuned by varying the Alx moles.


2015 ◽  
Vol 719-720 ◽  
pp. 132-136 ◽  
Author(s):  
Ghazaleh Allaedini ◽  
Siti Masrinda Tasirin ◽  
Meor Zainal Meor Talib ◽  
Payam Aminayi ◽  
Ifa Puspasari

This study presents comparisons between the morphologies and photoluminescence properties of tin oxide (SnO2) nanoparticles prepared by two methods, namely the sol gel and the co-precipitation methods. The characteristics of the particles were analyzed using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The particles prepared using the sol-gel method have a finer particle size and more spherical shape. However, no significant difference was observed in terms of morphology and homogeneity in the samples produced by either the co-precipitation or sol-gel methods. In contrast, the photoluminescence study shows that the emission peak for powder prepared using the sol-gel method was higher than that of the co-precipitation method.


2012 ◽  
Vol 1494 ◽  
pp. 253-258
Author(s):  
Dan Jiang ◽  
Songwei Han ◽  
Xuelian Zhao ◽  
Jinrong Cheng

ABSTRACTBa0.6Sr0.4TiO3 (BST) thin films were deposited on La0.5Sr0.5CoO3 (LSCO) buffered Ti substrates. Both BST and LSCO were prepared by sol-gel method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were used to investigate the effect of LSCO sol concentration on the crystallinity and surface morphology of the films. The results show that with the increase of LSCO sol concentration, BST films show variation of the structure and dielectric properties. BST films for LSCO of 0.2 mol/L exhibit a better crystallinity and improved dielectric properties, with the tunability, dielectric constant and tanδ of 30%, 420 and 0.028 respectively.


Sign in / Sign up

Export Citation Format

Share Document