EFFECT OF Y2O3 ON MICROSTRUCTURES AND WEAR RESISTANCE OF TiC REINFORCED Ti-Al-Si COATING BY LASER CLADDING ON TC4 ALLOY

2019 ◽  
Vol 26 (10) ◽  
pp. 1950077 ◽  
Author(s):  
H. X. ZHANG ◽  
J. J. DAI ◽  
Z. W. MA ◽  
X. Y. WANG ◽  
N. L. ZHANG

In this paper, TiC reinforced composite coatings were fabricated on TC4 alloy by laser cladding Ti,Al,Si, TiC and Y2O3 mixed powders. Microstructures and properties of the clad coatings with and without Y2O3 were discussed by comparative experiments. SEM, XRD and EDS were employed to discover the microstructures and the composition of phases. The hardness and wear resistance of the coatings were tested by the MM200 wear test machine and a HV-1000 digital hardness tester, respectively. The results showed that the coating was majorly composed of Ti5Si3, Ti7Al5[Formula: see text], Ti3AlC2, Ti3Al, Al3Ti, TiAl and Y2O3. The dilution zone exhibited a metallurgical bonding without pores and cracks. Compared with the TC4 substrate, the hardness and wear resistance of the coatings were heightened by 5–6 and 4.5–5.8 times, respectively. With 2.0[Formula: see text]wt.% Y2O3 addition, the microstructure of the coating was refined significantly, and the microhardness and dry sliding wear resistance were enhanced further. The effects of Y2O3 were attributed to heterogeneous nucleation of the residual Y2O3.

2017 ◽  
Vol 24 (Supp01) ◽  
pp. 1850009 ◽  
Author(s):  
H. X. ZHANG ◽  
H. J. YU ◽  
C. Z. CHEN ◽  
J. J. DAI

In order to improve the wear resistance of Ti alloys, different mass ratios of Ti-Si-Al powders were designed to fabricate hard phases reinforced intermetallic matrix composite coatings on the Ti-6Al-4V substrate by laser cladding. The corresponding coatings were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and high resolution transmission microscopy (HRTEM). The HV-1000 hardness tester and MM200 wear test machine were employed to test the hardness and the wear resistance of the composite coatings, respectively. The composite coatings mainly consisted of the reinforcements of Ti5Si3, Ti3AlC2 and Ti7Al5Si[Formula: see text] and the matrix of Ti3Al, TiAl, TiAl3 and [Formula: see text]-Ti. The micro-hardness of the Ti-35Al-15Si coating was from 956 HV[Formula: see text] to 1130 HV[Formula: see text], which was approximately 3–4 times of the substrate and the highest in the three samples. The wear rate of the Ti-35Al-15Si coating was 0.023[Formula: see text]cm3[Formula: see text][Formula: see text][Formula: see text]min[Formula: see text], which was about 1/4 of the Ti-6Al-4V substrate. It was the lowest in the three samples.


2017 ◽  
Vol 24 (4) ◽  
pp. 541-546 ◽  
Author(s):  
Hongxia Zhang ◽  
Huijun Yu ◽  
Chuanzhong Chen

AbstractThe composite coatings were fabricated by laser cladding Ni60A/B4C pre-placed powders on the surface of Ti-6Al-4V alloy for improving wear resistance and hardness of the substrate. In this research, the composite coatings were studied by means of X-ray diffraction, scanning electron microscope and energy dispersive spectrometer. The sliding wear tests were performed using MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the laser cladding coating and Ti-6Al-4V substrate. The composite coatings were mainly composed of the matrix of γ-Ni and a little Ni3Ti and the reinforcements of TiB2, TiC and CrB. The hardness of the sample of Ni60A-5B4C was approximately 2.5–3.5 times that of the Ti-6Al-4V substrate. The hardness of the sample of Ni60A-10B4C was 30% higher than that of sample 1. The wear resistance of samples 1 and 2 were 11 times and 10 times that of the substrate, respectively.


2015 ◽  
Vol 22 (03) ◽  
pp. 1550044 ◽  
Author(s):  
H. X. ZHANG ◽  
H. J. YU ◽  
C. Z. CHEN

The composite coatings were fabricated by laser cladding Al / TiN pre-placed powders on Ti –6 Al –4 V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β- Ti  ( Al ) and the reinforcements of titanium nitride ( TiN ), Ti 3 Al , TiAl and Al 3 Ti . The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti –6 Al –4 V substrate. And the wear resistance of sample 4 was four times of the substrate.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 747
Author(s):  
Kaiwei Liu ◽  
Hua Yan ◽  
Peilei Zhang ◽  
Jian Zhao ◽  
Zhishui Yu ◽  
...  

TiN and WS2 + hBN reinforced Ni-based alloy self-lubricating composite coatings were fabricated on TC4 alloy by laser cladding using TiN, NiCrBSi, WS2, and hBN powder mixtures. Energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and optical microscopy (OM) were adopted to investigate the microstructure. The wear behaviors of the self-lubricating composite coatings were evaluated under large contact load in room temperature, dry-sliding wear-test conditions. Results indicated that the phases of the coatings mainly include γ-Ni, TiN, TiNi, TiW, WS2, and TiS mixtures. The average microhardness of the composite coating is 2.3–2.7 times that of the TC4 matrix. Laser cladding TiN/WS2 + hBN/NiCrBSi self-lubricating composite coatings revealed a higher wear resistance and lower friction coefficient than those of the TC4 alloy substrate. The friction coefficient (COF) of the coatings was oscillating around approximately 0.3458 due to the addition of self-lubricant WS2 + hBN and hard reinforcement TiN. The wear behaviors testing showed that the wear resistance of the as-received TC4 was significantly improved by a laser cladding TiN/WS2 + hBN/NiCrBSi self-lubricating composite coating.


2010 ◽  
Vol 139-141 ◽  
pp. 398-401
Author(s):  
You Feng Zhang ◽  
Jun Li

In situ reaction synthesized TiB reinforced titanium matrix composites were fabricated using rapid non-equilibrium synthesis techniques of laser cladding. TiB/Ti composite coating was treated on Ti-6Al-4V surface using Ti and B powder mixture by laser cladding. Microstructure and dry sliding wear behavior of the in situ synthesized TiB/Ti composite coatings were investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), energy-dispersive spectroscopy (EDS), hardness tester and friction and wear tester. The composite coatings consist of Ti, TiB and intermetallic compounds. The TiB reinforcement dispersed homogeneously in the composite coatings. The wear tests show that the friction coefficient and wear weight loss ratio of the coatings is lower than that of the Ti-6Al-4V alloy. The composite coating was reinforced by the in situ synthesized TiB ceramic particles. Based on the SEM observation, effects of scan speed on hardness and wear resistance of the laser cladding coatings were investigated and discussed.


2011 ◽  
Vol 117-119 ◽  
pp. 1271-1275
Author(s):  
Ai Qin Wang ◽  
Jing Pei Xie ◽  
Wen Yan Wang ◽  
Ji Wen Li

The WC and high-Cr cast iron layer were obtained on the surface of ZG30 steel by infiltration casting process, so the surface alloying of ZG30 steel was realized. The microstructures and phase structures of penetrating layer were studied by SEM, TEM, XRD, the hardness of the test material was measured by the hardness tester, and the wear resistance was tested by wear test machine. The mechanism of alloyed layer forming was analyzed. The effects of WC contents on the wear resistance of alloyed layer were studied. The results show that the layer is dense, without pores, slag and other defects, the thickness of the alloyed layer is about 6-7mm, and the penetrating layer and matrix are metallurgical bonding. The maximum hardness of the alloyed layer surface is 820Hv. When the content of WC is 15%, the penetrating layer has the highest wear resistance which is 18.8 times as high as the matrix.


2010 ◽  
Vol 160-162 ◽  
pp. 450-455
Author(s):  
Kai Jin Huang ◽  
Chao Dong Tan ◽  
Chang Rong Zhou

To improve the wear property of magnesium alloys, Zr-based amorphous composite coatings have been fabricated on AZ91D magnesium alloy by laser cladding using mixed powders Zr55Al10Ni5Cu30/SiC. The microstructure of the coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The wear resistance of the coatings was evaluated under dry sliding wear test condition at room temperature. The results show that the coatings mainly consist of amorphous and different crystalline phases. The coatings exhibit excellent wear resistance due to the recombination action of amorphous and different crystalline phases. The main wear mechanism of the coatings and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear.


2020 ◽  
pp. 2050046
Author(s):  
TIANWEI YANG ◽  
ZHAOHUI WANG ◽  
SHIHAI TAN ◽  
FU GUO

To increase the strength and wear resistance of material surfaces, various combinations of B4C and 80TiFe powder were mixed into a Fe60 self-fluxing alloy powder; the composite coatings reinforced by TiB2–TiC were successfully prepared on Q235 steel surfaces by laser cladding. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) were used to study the microstructure and chemical and phase composition. Microhardness and wear testers were used to investigate the mechanical properties. The results show that the interfaces of composite coatings and substrate materials are excellent for metallurgical bonding. The block-like TiB2 particles and flower-like TiC particles are uniformly distributed in the cladding coating. When the mass fraction of the mixed powder is 30%, the average microhardness of the coating is approximately 1100 HV[Formula: see text], which is 50% higher than that without the mixed powder, and demonstrates the best wear with a performance twice as better as that of the substrate.


2012 ◽  
Vol 430-432 ◽  
pp. 101-105
Author(s):  
Kai Jin Huang ◽  
Hua Rui Jiang ◽  
Xin Lin

To improve the wear property of 00Cr13Ni4Mo hydro turbine blade stainless steel, Ni-based composite coatings were fabricated on 00Cr13Ni4Mo stainless steel by laser cladding using mixed powders of Ni60, WC and TiN. The microstructure of the coatings was characterized by XRD and SEM techniques. The wear resistance of the coatings was evaluated under dry sliding wear condition at room temperature. The results show that the coatings mainly consist of Ni-based solid solution, WC and TiN phases. The coatings exhibit excellent wear resistance due to its high hardness of WC and TiN phases. The main wear mechanisms of the coatings and the 00Cr13Ni4Mo sample are different, the former is abrasive wear and the latter is adhesive wear.


2012 ◽  
Vol 19 (02) ◽  
pp. 1250009 ◽  
Author(s):  
PENG LIU ◽  
WEI GUO ◽  
DAKUI HU ◽  
HUI LUO ◽  
YUANBIN ZHANG

The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ- (Fe, Ni) , FeAl , Ti3Al , TiC , TiNi , TiC0.3N0.7 , Ti2N , SiC , Ti5Si3 and TiNi . Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.


Sign in / Sign up

Export Citation Format

Share Document