MICROSTRUCTURE AND WEAR RESISTANCE OF IN-SITU SYNTHESIZED TiB2–TiC/Fe COMPOSITE COATING BY LASER CLADDING

2020 ◽  
pp. 2050046
Author(s):  
TIANWEI YANG ◽  
ZHAOHUI WANG ◽  
SHIHAI TAN ◽  
FU GUO

To increase the strength and wear resistance of material surfaces, various combinations of B4C and 80TiFe powder were mixed into a Fe60 self-fluxing alloy powder; the composite coatings reinforced by TiB2–TiC were successfully prepared on Q235 steel surfaces by laser cladding. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) were used to study the microstructure and chemical and phase composition. Microhardness and wear testers were used to investigate the mechanical properties. The results show that the interfaces of composite coatings and substrate materials are excellent for metallurgical bonding. The block-like TiB2 particles and flower-like TiC particles are uniformly distributed in the cladding coating. When the mass fraction of the mixed powder is 30%, the average microhardness of the coating is approximately 1100 HV[Formula: see text], which is 50% higher than that without the mixed powder, and demonstrates the best wear with a performance twice as better as that of the substrate.

2012 ◽  
Vol 512-515 ◽  
pp. 639-642 ◽  
Author(s):  
Xiao Qin Guo ◽  
Jing Bo Chen ◽  
Xin Fang Zhang ◽  
Yong Kai Wang ◽  
Rui Zhang

Cu-TiB2 composite coatings were in-situ synthesized on the copper substrate by using a Nd: YAG laser. The microstructure of the coating and the bonding interface between the laser cladding layer and the substrate were studied by X-ray and SEM. The microhardness and the wear resisting property were tested. The results show that the TiB2 particles were well-proportioned and spherical existing in the coating layer, the bonding interface between the layer and substrate was metallurgical bonding. The microhardness reaches HV450 and the wear resistance is about 10 times as much as that of Cu substate.


2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350034 ◽  
Author(s):  
BAOSHUAI DU

Laser cladding was applied to deposit in situ Fe - Ti - B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe - Ti - B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB 2 and Fe 2 B can be synthesized in the Fe - Ti - B coatings. The amount of TiB 2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe - Ti - B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.


2010 ◽  
Vol 150-151 ◽  
pp. 1429-1432
Author(s):  
Gui Hua Li ◽  
Yong Zou ◽  
Zeng Da Zou ◽  
Xu Wei Dong

The Fe-based composite coating reinforced by in situ synthesized multiphase ceramic particles has been successfully prepared by laser cladding preplaced powder on 42CrMo steel. The experimental results of X-ray diffraction and scanning electron micrograph indicate the coating is consisted by γ-Fe phase and Fe-Cr fine phase which possesses the better oxidation resistance and corrosion resistance. In-situ synthesized V(C,N), Cr2B3 and Cr3C2 particulates which are uniformly distributed in the composite coatings. The wear test showed that these reinforcement particulates improved significantly wear resistance of the coatings. The wear mass loss of the coating is about one tenth of the 42CrMo substrate. Laser cladding layers have better oxidation resistance. The oxide scale of the coatings is one eighth of the substrate through 750 constant temperature for 120h oxidation.


Author(s):  
Deepak Mehra ◽  
M.M. Mahapatra ◽  
S. P. Harsha

The purpose of this article is to enhance the mechanical properties and wear resistance of the RZ5 alloy used in the aerospace application by adding TiC particles. The present study discusses processing of in-situ RZ5-TiC composite fabricated by self-propagating high temperature (S.H.S.) method and its wear behavior. The effects of TiC particle on mechanical and microstructural properties of the composite are studied. The wear test is performed by varying the sliding distance and applied load. The composite is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results exhibited the properties like strength and hardness of RZ5-10wt%TiC composite has been increased considerably, while grain size is decreased as compared to the RZ5 alloy. The fractography indicated mixed mode (quasi-cleavage and ductile feature) failure of the composites. The wear results showed improvement in wear resistance of the composite. The FESEM showed dominate wear mechanisms are abrasion, ploughing grooves.


2010 ◽  
Vol 434-435 ◽  
pp. 743-746
Author(s):  
Shi Hai Zhao ◽  
Xiu Ming Jiang ◽  
Xu Guo Huai ◽  
Xiao Wei Fan

Laser cladding Fe-based alloy coatings with 0, 3, 6, 9, 12 and 15% Al2O3 xerogel on 45 steel substrates were prepared by 5kWCO2 continuous wave laser. The effect of the content of Al2O3 xerogel on the microstructure, microhardness and wear resistance of the coatings was investigated by scan electron microscope, X-ray diffraction. The results show that the microstructure and properties were different when the content of Al2O3 xerogel changed. The addition of Al2O3 xerogel can enhance the fluidity of molten liquid and refine the microstructure. Adding adequate amount of Al2O3 xerogel to Fe-based alloy can improve the hardness and the wear resistance due to the nano-Al2O3 particles on surfaces and the dispersion strengthening and hardening of nano- Al2O3 particles.


2012 ◽  
Vol 19 (02) ◽  
pp. 1250009 ◽  
Author(s):  
PENG LIU ◽  
WEI GUO ◽  
DAKUI HU ◽  
HUI LUO ◽  
YUANBIN ZHANG

The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ- (Fe, Ni) , FeAl , Ti3Al , TiC , TiNi , TiC0.3N0.7 , Ti2N , SiC , Ti5Si3 and TiNi . Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.


2011 ◽  
Vol 179-180 ◽  
pp. 253-256
Author(s):  
Hao Chen ◽  
Jian Gao Yang ◽  
Mi Song Chen

The Fe-based composite coatings were formed by plasma jet surface metallurgy using Fe, C, W, Cr and Al alloy powders on the low carbon steel. The morphology, microstructure, interface structure and the distribution of the in situ particles in the coatings were observed with optical microscope, scanning electron microscope and x-ray diffraction analysis. The results show that metallurgical bonding is obtained between coating and substrate, and the microstructure of coatings is mainly composed of γ-Fe, (Fe,Cr,W,Nb)7C3 and AlFe particles which are synthesized in stiu, are dispersivly distributed in the coatings. The micro-hardness gradually increased from bottom to the top of the coating, the maximum is 986 Hv0.1, about 4 times larger than that of the steel substrate.


2011 ◽  
Vol 179-180 ◽  
pp. 757-761 ◽  
Author(s):  
Kai Jin Huang ◽  
Hou Guang Liu ◽  
Chang Rong Zhou

To improve the corrosion property of magnesium alloys, Zr-based amorphous composite coatings have been fabricated on AZ91D magnesium alloy by laser cladding using mixed powders Zr55Al10Ni5Cu30/SiC. The microstructure of the coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion resistance of the coatings was tested in 3.5wt.% NaCl solution. The results show that the coatings mainly consist of amorphous and different crystalline phases. The coatings compared with AZ91D magnesium alloy exhibit good corrosion resistance because of the presence of the amorphous phase in the coatings.


2011 ◽  
Vol 675-677 ◽  
pp. 1299-1302 ◽  
Author(s):  
Xin Wei ◽  
Gui Qin Wang ◽  
Yong Feng Chang ◽  
Chao Liu

In this paper, WC-Ni60 alloy composite coating with different contents of WC particles was prepared on the 45steel substrate by high frequency induction cladding. The Composition and microstructure were characterized by X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA), the abradability and hardness were tested by UMT-2 tribometer and HV-50A durometer, respectively. The results showed that the hardness and wear resistance of coating were enhanced with the increasing of WC content. WC-Ni60 coating obtained the best wear resistance with the content of 50% WC. The hardness of the coating got the highest when the content of WC was 60%, but wear resistance decreased. The WC-Ni60 coating was reinforced for various hard phases and the metallurgical bonding layer about 10μm was formed between coating and 45steel substrate.


2012 ◽  
Vol 217-219 ◽  
pp. 1354-1358
Author(s):  
Jin Nan Zhao ◽  
Jing Liang ◽  
Sui Yuan Chen ◽  
Chang Sheng Liu ◽  
Feng Hua Liu

Ti-6Al-4V, C and TiB2 powders (71.5%Ti-6Al-4V+ 26.2%TiB2+2.3%C in wt. %) were prepasted and then laser clad on Ti-6Al-4V substrates. Laser cladding was carried out with a Nd:YAG pulse laser with the parameters of defocus length 15mm, pulse frequency 15Hz, scanning speed 2-4mm/s, electric current 200-240A. Microstructure and phases were analyzed with the Optical Microscopy(OM), Scanning Electron Microscopy(SEM) and X-Ray Diffraction(XRD). Laser cladding layers with smooth surfaces, good metallurgical bonding with no cracks and pores were formed. The average thickness of the coatings is approximately 80μm. Reactions among Ti, C and TiB2 in the laser molten pool cause in-situ synthesis of TiB, TiB2 and TiC reinforcements. The average microhardness is 836HV, which is more than twice that of the Ti-6Al-4V substrate (320HV). Friction coefficients of the cladding coatings fluctuate between 0.26-0.3. Laser cladding specimen with powder mixture of 71.5%Ti-6Al-4V+ 26.2%TiB2+2.3%C (weight loss 0.0007g after sliding 245m) possesses better wear property than that of the specimen with powder mixture of 90%Ti-6Al-4V+ 10%B4C (weight loss 0.0068g).


Sign in / Sign up

Export Citation Format

Share Document