AMERICAN OPTIONS AND INCOMPLETE INFORMATION

2019 ◽  
Vol 22 (06) ◽  
pp. 1950035 ◽  
Author(s):  
ERIK EKSTRÖM ◽  
MARTIN VANNESTÅL

We study the optimal exercise of American options under incomplete information about the drift of the underlying process, and we show that quite unexpected phenomena may occur. In fact, certain parameter values give rise to stopping regions very different from the standard case of complete information. For example, we show that for the American put (call) option it is sometimes optimal to exercise the option when the underlying process reaches an upper (lower) boundary.

2018 ◽  
Vol 6 (1-2) ◽  
pp. 50-65 ◽  
Author(s):  
Rittwik Chatterjee ◽  
Srobonti Chattopadhyay ◽  
Tarun Kabiraj

Spillovers of R&D outcome affect the R&D decision of a firm. The present paper discusses the R&D incentives of a firm when the extent of R&D spillover is private information to each firm. We construct a two-stage game involving two firms when the firms first decide simultaneously whether to invest in R&D or not, then they compete in quantity. Assuming general distribution function of firm types we compare R&D incentives of firms under alternative scenarios based on different informational structures. The paper shows that while R&D spillovers reduce R&D incentives under complete information unambiguously, however, it can be larger under incomplete information. JEL Classification: D43, D82, L13, O31


Author(s):  
Liguo Fei ◽  
Yuqiang Feng

Belief function has always played an indispensable role in modeling cognitive uncertainty. As an inherited version, the theory of D numbers has been proposed and developed in a more efficient and robust way. Within the framework of D number theory, two more generalized properties are extended: (1) the elements in the frame of discernment (FOD) of D numbers do not required to be mutually exclusive strictly; (2) the completeness constraint is released. The investigation shows that the distance function is very significant in measuring the difference between two D numbers, especially in information fusion and decision. Modeling methods of uncertainty that incorporate D numbers have become increasingly popular, however, very few approaches have tackled the challenges of distance metrics. In this study, the distance measure of two D numbers is presented in cases, including complete information, incomplete information, and non-exclusive elements


2003 ◽  
pp. 282-309 ◽  
Author(s):  
Cirtis E. Dyreson ◽  
Torben Bach Pedersen ◽  
Christian S. Jensen

While incomplete information is endemic to real-world data, current multidimensional data models are not engineered to manage incomplete information in base data, derived data, and dimensions. This chapter presents several strategies for managing incomplete information in multidimensional databases. Which strategy to use is dependent on the kind of incomplete information present, and also on where it occurs in the multidimensional database. A relatively simple strategy is to replace incomplete information with appropriate, complete information. The advantage of this strategy is that all multidimensional databases can manage complete information. Other strategies require more substantial changes to the multidimensional database. One strategy is to reflect the incompleteness in computed aggregates, which is possible only if the multidimensional database allows incomplete values in its hierarchies. Another strategy is to measure the amount of incompleteness in aggregated values by tallying how much uncertain information went into their production.


1984 ◽  
Vol 5 ◽  
pp. 85-87 ◽  
Author(s):  
John E. Kutzbach ◽  
P. J. Guetter

Sensitivity experiments can be used to illustrate the response of the general circulation to prescribed changes in lower boundary conditions (such as ocean temperature) or external forcing conditions (such as solar radiation). The climatic record from the late-glacial and the Holocene provides examples for both types of prescribed change experiments. A number of general circulation model experiments have been carried out. These are reviewed.At 18 ka 8P, orbital parameter values were very much like those of today, but the lower boundary conditions (ocean temperature, ice-sheet extent, etc.) were very different. The change in ocean temperature, and ice-sheet extent and thickness, were prescribed from the results of the Climate: Long-range Investigation Mapping and Prediction (CLIMAP) project.At 9 ka BP, orbital parameter values were very different from present, leading to increased radiation in July and decreased radiation in January (compared to present). The North American ice sheet still covered a significant area, so that lower boundary conditions also differed from the present ones. The combined and individual effects of these prescribed changes on the general circulation are reviewed, particularly in the context of changes of the monsoon circulation.At 6 ka BP, the solar radiation distribution differed from that of today in much the same fashion as at 9 ka BP, although the magnitude of the change was reduced. Lower boundary conditions were probably very similar to those of today.A series of experimental results from 18, 9, and 6 ka BP are presented as “snapshot” estimates of the paleoclimate of those times. The results are based upon simulations with the community climate model of the National Center for Atmospheric Research.


2018 ◽  
Vol 21 (07) ◽  
pp. 1850039
Author(s):  
WEIPING LI ◽  
SU CHEN

The early exercise premium and the price of an American put option are evaluated by using nonparametric regression on the time to expiration, the moneyness and the volatility of underlying assets. In terms of mean square error (MSE), our nonparametric methods of American put option pricings outperform the existing classical methods for both in-the-sample (1 September 2011–31 January 2012) and out-of-sample (1 September 2012–28 February 2013) testings on the S&P 100 Index (OEX). Our methods have better predictions and more accurate approximations. The Greek letters for both the early exercise premium and the American put option are computed numerically.


2002 ◽  
Vol 12 (11) ◽  
pp. 2501-2522 ◽  
Author(s):  
ISABEL MERCADER ◽  
JOANA PRAT ◽  
EDGAR KNOBLOCH

The onset of convection in systems that are heated via current dissipation in the lower boundary or that lose heat from the top boundary via Newton's law of cooling is formulated as a bifurcation problem. The Rayleigh number as usually defined is shown to be inappropriate as a bifurcation parameter since the temperature difference across the layer depends on the amplitude of convection and hence changes as convection evolves at fixed external parameter values. A modified Rayleigh number is introduced that does remain constant even when the system is evolving, and solutions obtained with the standard formulation are compared with those obtained via the new one. Near the 1 : 2 spatial resonance in low Prandtl number fluids these effects open up intervals of Rayleigh number with no stable solutions in the form of steady convection or steadily traveling waves. Direct numerical simulations in two dimensions show that in such intervals the dynamics typically take the form of a nearly heteroclinic modulated traveling wave. This wave may be quasiperiodic or chaotic.


1976 ◽  
Vol 33 (4) ◽  
pp. 793-809 ◽  
Author(s):  
C. C. Huang ◽  
Ilan B. Vertinsky ◽  
Norman J. Wilimovsky

Mathematical proofs and analyses of solution methods are presented for determining optimal policies for the management of a single species fishery under equilibrium conditions. Previous intuitive arguments for solution of optimal policies controlling mesh size and fishing rate given complete information are explicitly proven. The analysis is extended to the case where some of the parameters describing the dynamics of the population are known only imprecisely to the manager. Using probability distributions for those unknown parameter values the problem is cast as a stochastic program where expected sustained net revenues from the fishery are maximized. The associated problem of optimal allocation of research resources under uncertainty conditions is considered by evaluating the direct value of such information to management activities.Examples and algorithms are presented for the class of problems discussed.


2013 ◽  
Vol 25 (1) ◽  
pp. 27-43 ◽  
Author(s):  
MARIANITO R. RODRIGO

We revisit the American put and call option valuation problems. We derive analytical formulas for the option prices and approximate ordinary differential equations for the optimal exercise boundaries. Numerical simulations yield accurate option prices and comparable computational speeds when benchmarked against the binomial method for calculating option prices. Our approach is based on the Mellin transform and an adaptation of the Kármán–Pohlausen technique for boundary layers in fluid mechanics.


2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Mustafa Yildirim

AbstractTo demonstrate resolution and psychological strength, players often engage in pre-contest communication by publicly stating their desire to win an upcoming contest. Existing explanations for this phenomenon revolve around incomplete information and signaling. In this paper, I offer a complementary explanation that does not rely on signaling. Within a complete information setup, I show that players may have an incentive for pre-contest communication if, in addition to an audience (reputational) cost when the statement does not materialize, the players also incur an audience reward (credibility gain) when the statement materializes.


Author(s):  
Frank C. Zagare ◽  
Branislav L. Slantchev

Game theory is the science of interactive decision making. It has been used in the field of international relations (IR) for over 50 years. Almost all of the early applications of game theory in international relations drew upon the theory of zero-sum games, but the first generation of applications was also developed during the most intense period of the Cold War. The theoretical foundations for the second wave of the game theory literature in international relations were laid by a mathematician, John Nash, a co-recipient of the 1994 Nobel Prize in economics. His major achievement was to generalize the minimax solution which emerged from the first wave. The result is the now famous Nash equilibrium—the accepted measure of rational behavior in strategic form games. During the third wave, from roughly the early to mid-1980s to the mid-1990s, there was a distinct move away from static strategic form games toward dynamic games depicted in extensive form. The assumption of complete information also fell by the wayside; games of incomplete information became the norm. Technical refinements of Nash’s equilibrium concept both encouraged and facilitated these important developments. In the fourth and final wave, which can be dated, roughly, from around the middle of the 1990s, extensive form games of incomplete information appeared regularly in the strategic literature. The fourth wave is a period in which game theory was no longer considered a niche methodology, having finally emerged as a mainstream theoretical tool.


Sign in / Sign up

Export Citation Format

Share Document