Performance of Unstiffened Welded Steel I-Beam to Hollow Tubular Column Connections Under Seismic Loading

2015 ◽  
Vol 15 (01) ◽  
pp. 1450033 ◽  
Author(s):  
Qian-Yi Song ◽  
Amin Heidarpour ◽  
Xiao-Ling Zhao ◽  
Lin-Hai Han

Earthquake causes wide and severe damage to building structures, due to not just the great ground motion but also secondary actions, such as impact, blast or fire, occurring after earthquake. The extreme combined loading scenario should be considered for safety of buildings and lives. Taking fire for example, the combined load can be considered as an event in which the structures are first partially damaged under an earthquake and then attacked by fire. In order to investigate the post-earthquake loading scenario, it is important to assess the partial damage caused by earthquake on different components of structures. The behavior of welded steel I-beam to hollow square tubular columns is investigated herein. A detailed experimental study is presented in which two groups of unstiffened welded steel connections, with the same configurations, subjected to static and cyclic loading are considered. The flexibility and strength of the connections are measured, while the damage phenomena and failure modes are explored during the tests. The connection damage is found to be a cumulative fracture developing process which leads to significant gradual degradation of the mechanical properties of the connection. The quantificational evaluations of the cyclic loading induced damage are also carried out to investigate the connection damage level according to different loading intensities. A finite element modeling numerical study is also carried out to validate the experimental results and a good agreement is achieved. The test results and FE modeling provide a benchmark data for the unstiffened welded connections and can be used for further investigations of the connections subjected to combined actions such as post-earthquake fire.

2016 ◽  
Vol 16 (02) ◽  
pp. 1450098 ◽  
Author(s):  
Qian-Yi Song ◽  
Amin Heidarpour ◽  
Xiao-Ling Zhao ◽  
Lin-Hai Han

Earthquake causes severe damage to buildings and infrastructure, due to not only the ground motion but also secondary actions, such as impact, blast and fire which would occur after an earthquake. In order to investigate the post-earthquake loading scenarios, it is important to assess the partial damage of structures caused by earthquake. This paper presents the behavior of double-angle bolted steel I-beam to hollow square tubular column connections under static and cyclic loading. A detailed experimental study is presented in which two groups of bolted steel connections with different column wall thickness are considered. The flexibility and strength of the connections are measured, while the damage phenomena and failure modes are explored in the tests. The connection damage under cyclic loading is found to be an accumulative developing process of fracture which leads to significant gradual degradation of the mechanical properties of the connections. Quantitative evaluations of the cyclic loading induced damage are carried out to investigate the damage level of connections according to different loading scenarios. The test results herein provide a detailed understanding of the behavior of the double-angle bolted connections under seismic loading, which would be useful for further investigations under post-earthquake actions.


2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


2021 ◽  

As a promising composite structure, gangue concrete filled steel tubular (GCFST) column exhibites favarable characteristics including high strength and economic efficiency. This paper conducted numerical investiagations on structural behavior of a ring-beam connection to GCFST column with concrete beam under cyclic loading. Furthermore, finite element models of column-beam connections were developed using ABAQUS and validated against full-scale experimental tests to identify accuracy of selected modeling approaches. Using these validated models, stress distribution of each component was examined to study the force-transferring mechanism among the components and failure modes of the ring-beam connection. Research study indicated that the ring-beam connection showed a reasonable force-transferring mechanism under cyclic loading and the remarkable earthquake-resistant performance with high capacity and acceptable ductility. Finally, parametric studies were performed to assess the influences of beam-to-column stiffness ratio,steel ratio, axial load level, and concrete compressive strength on connection cyclic behaviors. Parametric studies provided some suggestions and references for the application of the ring-beam connection in various engineering projects.


2020 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Davor Skejić ◽  
Ivan Čudina ◽  
Ivica Garašić ◽  
Federico M. Mazzolani

Aluminium portal frames with a tension tie element are a commonly used type of aluminium structure. Due to the significant reduction in aluminium’s mechanical properties caused by welding, typical beam to column joints of such frames are formed using bolts and welded steel knee joints embedded in the structure. Expressions for the reliable assessment of the behaviour of such joints are lacking, thus limiting the use of aluminium portal frames. Although the behaviour of steel joints using hollow sections is well investigated, there are only a small number of studies regarding knee joints, none of which investigate the influence of the tie element on the joint behaviour. Therefore, the first stage of the research is focused on the flexural behaviour of steel knee joints with tension tie elements. Laboratory tests of three identical steel knee joints with a tension tie element were conducted as well as a parametric numerical study with variation of tie element stiffness. It was concluded that different stiffnesses of the tie element have little influence on moment–rotation behaviour of the knee joint, but greatly affect overall frame resistance to vertical loads. It was also concluded that different stiffnesses of the tie element can lead to different failure modes of the knee joint as well.


2013 ◽  
Vol 41 (1) ◽  
pp. 49-65
Author(s):  
Fayez Kaiser Abdelsayed ◽  
Mahmoud Hussen Ahmed ◽  
Khairy Hassan Abdelkareem ◽  
Mahmoud Hosny Soghair

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1293
Author(s):  
Hongwei Ma ◽  
Hao Zheng ◽  
Wei Zhang ◽  
Zhanzhan Tang ◽  
Eric M. Lui

This paper describes a study of welded steel plate joints using experimental and numerical methods. The objectives of this study are to observe the mechanical behavior of welded plate joints under monotonic and cyclic loads, identify their damage degradation processes, and provide useful test data for future damage analysis of beam-column connections in steel frame structures. Six specimens were designed, of which three were tested under monotonic loads, and the other three were tested under cyclic loads. The test setup consisted of three plates arranged in a cruciform and connected by two groove welds. The monotonic and cyclic loads were applied to the free end of the two outstanding plates, inducing a pulling force on the welded joint. Because the only element studied in the present work is the weld, the sizes of the three plates were kept constant. The responses of these welded plate joints are discussed in terms of their experimentally and numerically obtained mechanical parameters, hysteretic behavior, strain variations, stiffness degradation, damage process, and failure modes. The results show that the energy damage model outperforms the displacement damage model in terms of indicating the degree of damage. Furthermore, if designed according to code, all these welded plate joints perform satisfactorily.


2011 ◽  
Vol 471-472 ◽  
pp. 697-702 ◽  
Author(s):  
R. Hawileh ◽  
J.A. Abdalla ◽  
Adil K. Al-Tamimi

Seismic retrofitting of reinforced concrete (RC) beams by means of carbon fiber reinforced polymer (CFRP) composites is one of the state-of-the-art techniques that have been widely practiced lately. Such external strengthening schemes seem to enhance both stiffness and strength of RC beams when subjected to static and cyclic loading. Extensive research investigation has been carried out for beams subjected to monotonic static loading while limited research data is available for beams subjected to cyclic loadings. Therefore, this study is initiated and its aim is to present the results of full scale experimental testing of RC beams under four-point-bending loading and subjected to monotonic and cyclic loading histories up to failure of the specimens. An unstrengthened RC beam was tested monotonically to serve as a bench-mark. The remaining two externally strengthened RC beams with different anchorage schemes were tested under cyclic loading. The strengthening test matrix included beams bonded with a unidirectional CFRP plate that covers 90% of the beam's soffit length, with one or two unidirectional layers of CFRP wraps at anchorage locations along the beam's length. The anchorage locations were at the edges of the CFRP plate and at the middle of the beam's span. The results presented herein show an increase in the overall strength for the strengthened beams over the unstrengthened ones. The different failure modes and the resulting ductility of the tested specimens are also discussed. This study is considered to be the first part of an extensive program that aims to investigate the different parameters that govern the external strengthening techniques of RC beams when subjected to cyclic loading.


2012 ◽  
Vol 579 ◽  
pp. 387-397
Author(s):  
Zheng Ming Su ◽  
Ru Yi He ◽  
Pai Chen Lin ◽  
Jong Ning Aoh ◽  
Yung Chuan Chiou ◽  
...  

Failure modes of swept spot friction welds in lap-shear specimens of alclad 2024-T3 aluminum sheets are first investigated based on experimental observations. Optical and scanning electron micrographs of the welds before and after failure under quasi-static and cyclic loading conditions are examined. Experimental results show that the failure modes of the welds under quasi-static and cyclic loading conditions are quite different. Failure modes of swept spot friction welds depend considerably on the weld geometry, microstructure, and load amplitude. A fatigue crack growth model based on the paths of the dominant kinked fatigue cracks is developed to estimate the fatigue lives of the spot friction welds. The global and local stress intensity factors for finite kinked cracks, the stress intensity factors for finite transverse cracks, and the Paris law for fatigue crack propagation are used. The fatigue life estimations agree well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document