Dynamic Response and Reliability of Six-Leg Jack-Up Type Wind Turbine Installation Vessel

2017 ◽  
Vol 17 (03) ◽  
pp. 1750037 ◽  
Author(s):  
Sanghwan Heo ◽  
Weoncheol Koo ◽  
Min-Su Park

A fast, reliable and optimized numerical procedure of the hydrodynamic response analysis of a slender-body structure is presented. With this method, the dynamic response and reliability of a six-leg jack-up-type wind turbine installation vessel under various environmental conditions is analyzed. The modified Morison equation is used to calculate the wave and wind-driven current excitation forces on the slender-body members. The Det Norske Veritas (DNV) rule-based formula is used to calculate the wind loads acting on the superstructure of the jack-up leg. From the modal analysis, the natural period and standardized displacement of the structure are determined. The Newmark-beta time-integration method is used to solve the equation of motion generating the time-varying dynamic responses of the structure. A parametric study is carried out for various current velocities and wind speeds. In addition, a reliability analysis is conducted to predict the effects of uncertainty of the wave period and wave height on the safety of structural design, using the reliability index to indicate the reliability of the dynamic response on the critical structural members.

2015 ◽  
Vol 775 ◽  
pp. 247-251
Author(s):  
Sang Hwan Heo ◽  
Weon Cheol Koo ◽  
Min Su Park ◽  
Sung Jae Kim

In this study, the hydrodynamic characteristics of an X-braced-type jack-up leg with pile-soil foundation were investigated. Using the modified Morison equation and substructure method, wave excitation forces with effects of soil-structure interaction were calculated. The natural period and mode vector of the structure were obtained by using modal analysis. Newmark-beta time-integration method was used to predict the dynamic responses of the structure in the time domain. The maximum displacement and bending stress of the structure were analyzed under various soil conditions.


Author(s):  
Tomoaki Utsunomiya ◽  
Iku Sato ◽  
Shigeo Yoshida ◽  
Hiroshi Ookubo ◽  
Shigesuke Ishida

In this paper, dynamic response analysis of a Floating Offshore Wind Turbine (FOWT) with Spar-type floating foundation is presented. The FOWT mounts a 100kW down-wind turbine, and is grid-connected. It was launched at sea on 9th June 2012, and moored on 11th for the purpose of the demonstration experiment. During the experiment, the FOWT was attacked by severe typhoon events twice. Among them, Sanba (international designation: 1216) was the strongest tropical cyclone worldwide in 2012. The central atmospheric pressure was 940 hPa when it was close to the FOWT, and the maximum significant wave height of 9.5m was recorded at the site. In this paper, the dynamic responses of the platform motion, the stresses at the tower sections and the chain tensions during the typhoon event, Sanba (1216), have been analyzed, and compared with the measured data. Through the comparison, validation of the numerical simulation tool (Adams with SparDyn developed by the authors) has been made.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5820 ◽  
Author(s):  
Takeshi Ishihara ◽  
Yuliang Liu

In this study, advanced hydrodynamic models are proposed to predict dynamic response of a floating offshore wind turbine (FOWT) in combined wave and current conditions and validated by laboratory and full-scale semi-submersible platforms. Firstly, hydrodynamic coefficient models are introduced to evaluate the added mass and drag coefficients in a wide range of Reynolds numbers. An advanced hydrodynamic model is then proposed to calculate the drag force of cylinder in combined wave and current conditions. The proposed model is validated by the water tank tests in the current-only, wave-only and current-wave conditions and is used to investigate the effect of current on the dynamic response of FOWT. Finally, the full-scale semi-submersible platform used in the Fukushima demonstration project is investigated. It is found that the predicted dynamic responses of platform by the proposed hydrodynamic models are improved by the directional spreading function of the sea wave spectrum and show favorable agreement with the field measurement.


Author(s):  
Yilun Li ◽  
Shuangxi Guo ◽  
Min Li ◽  
Weimin Chen ◽  
Yue Kong

As the output power of wind turbine increasingly gets larger, the structural flexibility of elastic bodies, such as rotor blades and tower, gets more significant owing to larger structural size. In that case, the dynamic interaction between these flexible bodies become more profound and may significantly impact the dynamic response of the whole wind turbine. In this study, the integrated model of a 5-MW wind turbine is developed based on the finite element simulations so as to carry out dynamic response analysis under random wind load, in terms of both time history and frequency spectrum, considering the interactions between the flexible bodies. And, the load evolution along its transmitting route and mechanical energy distribution during the dynamic response are examined. And, the influence of the stiffness and motion of the supporting tower on the integrated system is discussed. The basic dynamic characteristics and responses of 3 models, i.e. the integrated wind turbine model, a simplified turbine model (blades, hub and nacelle are simplified as lumped masses) and a rigid supported blade, are examined, and their results are compared in both time and frequency domains. Based on our numerical simulations, the dynamic coupling mechanism are explained in terms of the load transmission and energy consumption. It is found that the dynamic interaction between flexible bodies is profound for wind turbine with large structural size, e.g. the load and displacement of the tower top gets around 15% larger mainly due to the elastic deformation and dynamic behaviors (called inertial-elastic effect here) of the flexible blade; On the other hand, the elastic deformation may additionally consume around 10% energy (called energy-consuming effect) coming from external wind load and consequently decreases the displacement of the tower. In other words, there is a competition between the energy-consuming effect and inertial-elastic effect of the flexible blade on the overall dynamic response of the wind turbine. And similarly, the displacement of the blade gets up to 20% larger because the elastic-dynamic behaviors of the tower principally provides a elastic and moving support which can significantly change the natural mode shape of the integrated wind turbine and decrease the natural frequency of the rotor blade.


2016 ◽  
Vol 30 (4) ◽  
pp. 505-520 ◽  
Author(s):  
Yong-sheng Zhao ◽  
Jian-min Yang ◽  
Yan-ping He ◽  
Min-tong Gu

Author(s):  
Chinsu Mereena Joy ◽  
Anitha Joseph ◽  
Lalu Mangal

Demand for renewable energy sources is rapidly increasing since they are able to replace depleting fossil fuels and their capacity to act as a carbon neutral energy source. A substantial amount of such clean, renewable and reliable energy potential exists in offshore winds. The major engineering challenge in establishing an offshore wind energy facility is the design of a reliable and financially viable offshore support for the wind turbine tower. An economically feasible support for an offshore wind turbine is a compliant platform since it moves with wave forces and offer less resistance to them. Amongst the several compliant type offshore structures, articulated type is an innovative one. It is flexibly linked to the seafloor and can move along with the waves and restoring is achieved by large buoyancy force. This study focuses on the experimental investigations on the dynamic response of a three-legged articulated structure supporting a 5MW wind turbine. The experimental investigations are done on a 1: 60 scaled model in a 4m wide wave flume at the Department of Ocean Engineering, Indian Institute of Technology, Madras. The tests were conducted for regular waves of various wave periods and wave heights and for various orientations of the platform. The dynamic responses are presented in the form of Response Amplitude Operators (RAO). The study results revealed that the proposed articulated structure is technically feasible in supporting an offshore wind turbine because the natural frequencies are away from ocean wave frequencies and the RAOs obtained are relatively small.


2021 ◽  
Author(s):  
Zana Sulaiman

Abstract This paper presents the results of wind load computational fluid dynamics (CFD) calculations performed on the topside structures of a self-propelled wind turbine installation jack-up. The CFD calculations were performed for the jack-up topside structures with and without the deck load. An atmospheric boundary layer profile was applied for the model-scale calculations. The full range of heading angles was considered. The CFD results were validated through comparison with the wind tunnel tests which were carried out at the German-Dutch wind tunnels (DNW) in Marknesse, The Netherlands. Moreover, a comparison is presented between the applied boundary layer profiles throughout the CFD computational domain with those profiles measured in the wind tunnel. The CFD results were found to be in good agreement with the wind tunnel tests for the considered cases, verifying the feasibility of the CFD method as an important design tool for the prediction of wind loads during the design processes of these types of jack-ups.


2021 ◽  
Author(s):  
Kayo Vanderheggen ◽  
Joost Janssen ◽  
Nate Meredith

When a wind turbine installation jack-up performs a heavy lifting operation with the crane it affects the loads on the foundation. For these units the crane typically encircles a leg or is positioned close to it. Consequently, that leg attracts most of the loads due to crane operations. For each location jack-ups prove the capacity of the foundation by applying a controlled, high load at each of the footings before commencing operations. This process is known as preloading. The achieved preload at the jack-up’s foundation determines the operational limit. Exceedance of the preload value may result in foundation instability. Depending on the site’s foundation characteristics the consequences of such an exceedance range from negligible to catastrophic failure. GustoMSC has developed Operator Support System (OSS) software with the purpose to make the operator aware of the limitations imposed by the preloaded foundation. The application outlines operational limits based on real-time data from the jack-up, jacking system and crane which enables the operators to safely unlock the full potential of their wind turbine installation jack-up.


2019 ◽  
Vol 23 (2) ◽  
pp. 289-306
Author(s):  
Tao Huo ◽  
Lewei Tong

This study discusses the wind-induced response of existing pitch-controlled 1.25 MW wind turbine structures, with a particular focus on the influence of the blade-rotation effect, cross-wind loads of the tubular tower and the wind direction, and compares numerical responses with the measured dynamic responses. An integrated finite-element model consisting of blades, a nacelle, a tower and a foundation is established. The aerodynamic loads exerted on the rotating blades and the aerodynamic loads acting on the tubular tower are then obtained. A wind-induced response calculation method of the wind turbine structures corresponding to different wind speeds and wind directions is established for performing a wind-induced response analysis. Finally, comparisons between the measured responses and the corresponding numerical response results are performed to verify the accuracy of the proposed wind-induced response calculation method. The results indicate that neglecting the cross-wind aerodynamic loads of large-scale wind turbine structures can lead to unsafe design. The wind direction has different influences on the along-wind and cross-wind dynamic responses. The statistical values of the measured dynamic responses are slightly greater than those of the numerical analysis results, but the magnitudes of the responses are the same. Therefore, the proposed wind-induced response calculation method for wind turbine structures is feasible and reasonable. It can be used to conduct the fatigue life prediction of wind turbine tubular towers in future research which is an important issue in the structural design of wind turbine tubular tower structures.


2011 ◽  
Vol 250-253 ◽  
pp. 2211-2215
Author(s):  
Fu Qiang Qi

In order to discuss the effect of earthquake and dynamic ice loads to a bridge pier, this paper considered the effect of added mass of dynamic water, and it deduced the dynamic equilibrium equations for a bridge pier subject to earthquake and dynamic ice loads on the basis of nonlinear Morision equation. Using numerical analysis method, it discussed the dynamic response of a bridge pier subject to different types of earthquake loads, forced ice loads, and both earthquake and forced ice loads. Through comparing the pier responses in different work conditions, it discovered that the dynamic responses of the bridge pier subject to forced dynamic ice loads rise and fall severely at the time of ice buckling broken periodic change. The coupling effects of forced dynamic ice loads and earthquake especially near-fault earthquake enhance the dynamic response of bridge pier significantly.


Sign in / Sign up

Export Citation Format

Share Document