Bridge Surface Roughness Identification Based on Vehicle–Bridge Interaction

2019 ◽  
Vol 19 (07) ◽  
pp. 1950069 ◽  
Author(s):  
Y. Zhan ◽  
F. T. K. Au

As the surface roughness of a bridge has significant influence on the interaction between a moving vehicle and the bridge itself, it is one of the hurdles for the use of the drive-by technique in the assessment of bridges. Proper identification of the surface roughness of a bridge will help minimize the associated uncertainties and improve the accuracy of numerical simulation. This paper presents a method for estimating the surface roughness profile from the responses extracted from a vehicle instrumented with accelerometers passing on the bridge tested. By letting the vehicle run along the bridge multiple times with different added masses, an estimation of the roughness profile can be obtained based on the vehicle–bridge interaction theory. No baseline data is required. Three simplified vehicle models have been used in this study, i.e. spring–mass model, spring–damper–mass model and half-vehicle model. The feasibility and effectiveness of this method are evaluated by finite element simulation with a simply supported bridge and a continuous bridge. The performance of this method for different levels of road surface roughness is assessed by suitable error indicators. A parametric study about the influence of vehicle and bridge parameters, measurement noise and structural damage on the identified results have been carried out.

2017 ◽  
Vol 17 (08) ◽  
pp. 1750081 ◽  
Author(s):  
Z. Q. Qi ◽  
F. T. K. Au

The mode shapes of a bridge are important modal properties for many purposes, such as damage detection and model updating. Traditional methods for constructing mode shapes often require installation of instruments on the bridge for collection of dynamic responses. However, these methods are not only costly but also inconvenient. Therefore, a method is developed for constructing the mode shapes of girder bridges using the dynamic responses extracted from a moving vehicle under impact excitation. This paper reports some numerical simulations based on finite element modeling. First, the dynamic responses of a moving vehicle under impact excitation are generated for simulation. Then the component response associated with each natural frequency of the bridge is extracted by using a suitable filter. Finally, the mode shape associated with each natural frequency identified is constructed from the extracted component response and its Hilbert transform pair. The proposed method uses only the information measured from the moving vehicle, which acts both as a sensor and an exciter. Moreover, the additional impact excitation on the vehicle helps to excite the bridge. This helps to improve the accuracy by overcoming the adverse effects of measurement noise and road surface roughness. The effects of measurement noise, road surface roughness and vehicle speed on the accuracy of results are evaluated. A numerical study is presented to verify the feasibility of the proposed method.


Author(s):  
Ying Zhan

Bridge surface roughness encompasses dents, cracks, bulges and other defects due to construction as well as wear and tear in service. It significantly affects the traffic load on bridge, costs extra vehicle fuel consumption and tire wear, and therefore is a major concern of bridge monitoring and maintenance. As it considerably affects the contact force between the vehicle and the bridge, it is also a major obstacle of using vehicle measured data to identify bridge parameters. This paper presents a method to estimate the surface roughness profile of a bridge. With the acceleration data gathered from two different vehicles running on the bridge successively at the same speed, the roughness profile of the bridge can be measured with satisfactory accuracy. The method is verified with finite element simulation.


2021 ◽  
Author(s):  
XueTao Wei ◽  
caixue yue ◽  
DeSheng Hu ◽  
XianLi Liu ◽  
YunPeng Ding ◽  
...  

Abstract The processed surface contour shape is extracted with the finite element simulation software, and the difference value of contour shape change is used as the parameters of balancing surface roughness to construct the infinitesimal element cutting finite element model of supersonic vibration milling in cutting stability domain. The surface roughness trial scheme is designed in the central composite test design method to analyze the surface roughness test result in the response surface methodology. The surface roughness prediction model is established and optimized. Finally, the finite element simulation model and surface roughness prediction model are verified and analyzed through experiment. The research results show that, compared with the experiment results, the maximum error of finite element simulation model and surface roughness prediction model is 30.9% and12.3%, respectively. So, the model in this paper is accurate and will provide the theoretical basis for optimization study of auxiliary milling process of supersonic vibration.


Sign in / Sign up

Export Citation Format

Share Document