Vibration Characteristics of Hybrid Honeycomb Core Sandwich Structure with FG-CNT Reinforced Polymer Composite Faces under Various Thermal Fields

Author(s):  
S. Swetha ◽  
P. Thamilselvi ◽  
Vinod Bhagat ◽  
M. P. Arunkumar

This paper presents the free and forced vibration characteristics of a hybrid honeycomb core sandwich structure consisting of a top and bottom FG-CNT reinforced polymer composite face sheet in a thermal environment. Different thermal fields like the uniform, linear and nonlinear temperature fields in the thermal environment along the thickness direction are considered to study the dynamic characteristics of the hybrid honeycomb core sandwich structure. The mathematical model is developed using Hamilton’s principle along with the third-order shear deformation theory. Five unknown modal coefficients are found using the modal superposition principle to calculate the forced vibration response. From the free and forced vibration results, it is observed that the FG-V[Formula: see text] grading pattern face sheets with lower cell size honeycomb core and with higher cell wall thickness honeycomb core show better vibration characteristics. It is noticed that the sandwich structure with honeycomb core and FG-V[Formula: see text] CNT reinforced polymer composite face has a higher critical buckling temperature in the thermal environment. Furthermore, for different percentages of critical buckling temperature, the natural frequencies and vibrating patterns for uniform, linear and nonlinear temperature fields are the same for the sandwich structure with UD, FG-V[Formula: see text] and FG-[Formula: see text]V CNT reinforced polymer composite faces. In addition, the resonant peak of the sandwich structure with FG-V[Formula: see text] CNT reinforced polymer composite face in nonlinear temperature field shifts more toward the right, while that of the uniform temperature field shifts more toward the left in the velocity response.

Author(s):  
Mehmet Ziya Okur ◽  
Serkan Kangal ◽  
Metin Tanoğlu

Lightweight composite sandwich structures are laminated composite structures that are composed of thin stiff face sheets bonded to a thicker lightweight core in between. These structures have high potential to be used in marine, aerospace, defense and civil engineering applications due to their high strength to weight ratios and energy absorption capacity.In this study, composite sandwich structures were developed with carbon fiber reinforced polymer composite face sheets and aluminum honeycomb core materials with various thicknesses. Carbon fiber/epoxy composite face sheets were fabricated with lamination of [0/90]s carbon fabrics by vacuum infusion technique. Al honeycomb layers were sandwiched together with the face sheets using a thermosetting adhesive. Mechanical tests were carried out to determine the mechanical behavior of face sheets, Al cores and the composite structure. Effect of core thickness on the mechanical properties of the sandwich was investigated.


Sign in / Sign up

Export Citation Format

Share Document